A Web Service Request Language

Gaurav Mitra

A subthesis submitted in partial fulfillment of the degree of
Bachelor of Software Engineering at
The School of Computer Science
Australian National University

October 2009

© Gaurav Mitra

Typeset in Palatino by TgX and I&XTEX 2.

Except where otherwise indicated, this thesis is my own original work.

Gaurav Mitra
30 October 2009

Acknowledgements

Firstly, I'd like to thank my supervisor Dr. Xuan Zhou for the sheer amount of time
and effort that he has spent in helping me with this project. His insight and guidance
have been very important as far as my contribution in this project is concerned. The
original content and ideas presented in this thesis have largely been developed in col-
laboration with Xuan. I would also like to thank Dr. Athman Bouguettaya for his help
in this project.

I'd like to thank all my friends and colleagues for providing me with their support
and advice. In particular I'd like to thank Martin Bolanca for his support throughout
the year, and Dr. Ashvin Parameswaran for giving me constructive feedback about
the structure and content of this thesis.

I would like to thank my parents, Rupa and Debasis who have always given me
tremendous emotional support. I couldn’t have done it without them. Last but not
the least, I would like to thank Arya for her love and encouragement in every step. I
definitely couldn’t have done it without her.

Abstract

The rapidly progressing paradigm of service oriented computing is realised by web
services which have yet to reach their full potential in the e-marketplace. This project
is an endeavour to bring web services and service oriented computing closer to clients
and businesses alike in terms of accessibility and composability. We have created
a web service request language based on which clients will be able to specify their
service request/requirements in a clear and unambiguous manner. This language is
accompanied by a design of the request system that shall process the service request,
generate a service execution plan, invoke services according to the plan and provide
the results to the user.

To address the issues related to automatic composition of web services we take an ap-
proach derived from graph theory and finite state machines to create the concepts of a
service variable, a user state and a request oriented service model. This model is then
used to capture dynamic information about services and their capabilities in terms of
service variables. The request language is designed to express user requests in terms
of these service variables.

Algorithms have been developed to map user requests to states in the user state graph,
extract the service execution plan from the graph and to execute the plan. The thesis
concentrates on developing approaches that are feasible to implement in real-world
scenarios minimising time complexities for algorithms developed. Many future possi-
bilities in regards to this relatively new way of modelling web services from a service
request point of view, have also been discussed.

vii

Contents

Acknowledgements

Abstract

1

An Introduction

1.1 ProjectGoals & Scope

1.2 ContributionSummary o L L oL

1.3 ThesisStructure L

1.4 ResearchPlan
Background

2.1 Service Oriented Computing (SOC)

211 SOC:TheFuture

212 Movingtothecloud,

2.1.3 SOC Implementation : Services in thecloud

22 WebServices

2.3 Building Blocks : The Web Service Technology Stack

23.1 TheTransportLayer

232 TheMessageLayer

2321 XML

2322 SOAP

233 The DescriptionLayer

2331 WSDL

2.3.3.2 The Separation between Interface and Implementation .

234 TheDiscovery Layer

2341 UDDI e

2.3.5 The Quality of Service Layer

2351 QoS Attributes

2.3.5.2 Service Level Agreement (SLA)

2.3.6 The Business Processes Layer

2.3.6.1 BPEL4WS: Web Service Orchestration

23.7 The CollaborationLayer

2371 CDL4AWS: Web Service Choreography

2.4 Web Service Composition

241 Service Semantics : The Ontology Approach

2411 OWL-S . ..

2412 WSMO e

ix

20

X Contents

2.5 The Web Service Usage Scenario
2.6 The Need For ARequestSystem
2.6.1 Creation of the Request System : Research Challenges

3 Related Work
3.1 Request Systems and their languages
311 XSRL
3.1.2 Framework for Web Service Query Algebra and Optimisation . .
3.2 Comparison with The Web Service Request System

4 Our Service Example

5 The Web Service Request System

51 Conceptualising the system : A Software Cloud
52 Defining partsof thesystem
5.3 The Web Service Request Oriented Model
53.1 TheUserStateModel
5.3.1.1 The Web Service Variable

5312 TheUserState

53.13 TheUserStateGraph

5.3.2 The Web Service DescriptionModel
5.3.2.1 The Abstract Web Service Description Model

5.3.2.2 The Concrete Web Service Description Model

5.4 The Web Service Request Language
54.1 Examples of WSRL Requests
5411 Getting a Train Ticket Booking

5412 Getting a Holiday Package

5.5 The Web Service Request Framework
5.5.1 The InitialisationPhase

552 TheOperationalPhase
5.5.2.1 The SEPlan Generation Process

5.5.2.2 The SEPlan Execution Process

5.5.3 Algorithm Time Complexities

6 Conclusion & Future Work

A High Level Requirements Specification
B WSRL in Backus-Naur Form

C Glossary of Acronyms

Bibliography

29
29
29
31
33

35

81

85

87

89

91

List of Figures

1.1

2.1
2.2
2.3
24
2.5

3.1

51
52
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11

5.12
5.13
5.14

5.15
5.16
5.17
5.18
5.19
5.20
521

Purchasing A Book Via The Request System

A Service Cloud Example
The Difference Between A Service And A Web service
The Web Service Technology Stack
The Web Service Usage Process
The Vision of the Web Service Request System

An XSRL Example Request

The Request System As A SoftwareCloud
The Web Service Request System
The User State Model
The Web Service Variable
A User State Changed By Invocation Of An Atomic Service
A User State Graph w.r.t The Operations Of The Train Service
The Web Service DescriptionModel
The Identification Component
The Information Component
The Functionality Component
Use of Information and Functionality components to describe the Train

Service e e e e
The Implementation Component
The Policy Component
Use of Implementation and Policy Components To Describe The Con-

crete Train Service e e
The Initial Service DesignPhase
The Service Execution Plan Generation Process
An Example Encoded Service Request.
An Example GoalState oo L
An Example Goal StatePath
An Example Service ExecutionPlan
The SEPlan Execution Process

xi

xii

LIST OF FIGURES

List of Definitions

1: Web Service Variable.o i 44
2 USer State. . oottt 47
3: User State Dependency ... 48
4: UserState Graph.o 49
5: Web Service Description Component......................oiiiiiiiiiiia., 52
6 : Web Service Variable Constraint., 59
7: Web Service Request i 60
8: Web Service Request Language 60
9: GoalState Path 69
10: Web Service Execution Plan.......... ... i 69

xiii

xiv

LIST OF FIGURES

List of Algorithms

N Ul = WD

USG Generator e 68
Request Encoder 71
Request Mapper 72
TS-Path-Finder 73
Execution-Plan-Generator 75
SEPExecutor e 79

XV

xvi LIST OF ALGORITHMS

Chapter 1

An Introduction

An emerging trend in the Internet today is that of e-marketplaces. Companies are
marketing their products via the Internet in a very large scale manner. The range of
products available via the Internet is also diverse. Internet marketing has already be-
come mainstream. As a result, the customer-vendor interface is usually very well de-
fined in the form of internet websites which provide customers with all possible and
intuitive options for specifying their business needs.But what happens when instead
of a human customer, another business application (or a computer) tries to acquire
products via the internet ? The business application could be trying to conduct this
transaction on behalf of its own customers. The answer to this question lies in service
oriented computing.

Products on the Internet are also being provided as services to the customer. For e.g. if
a customer purchases an airline ticket from an online travel agency, the travel agency
has just provided the customer with a service. This conceptual framework of a service
has very general connotations. Any abstract product may be represented as a service.
Even a request for information about a product may be thought of as a service. Mul-
tiple services together may be composed or orchestrated to form a single service.

This way of thinking gives us another layer of abstraction and modularity over any
type of product or resource that can be provided via a network. It provides us with
a way of conceptualising abstract products as loosely coupled components that may
be reused to form larger components. It introduces a component based architecture
to the Internet marketplace. What it also does, is provide a platform on the basis of
which computers (or applications) may interact with other computers to obtain data
or results. Hence, services could in a way be thought of as classical Al intelligence
agents.

In this service oriented computing (SOC) paradigm, customers should expect a much
better Internet marketing experience. In fact, all they should have to do is specify
what they want through a standardised interface, or via a standardised language and
expect to receive their desired products or results. In order for this to be realised, a
system must be created that can accept such requests from users, interact with nec-
essary services, obtain a result and deliver it to the user. As SOC is still in stages of

1

2 An Introduction

infancy with respect to the internet marketplace, such a system has not yet been con-
ceptualised and created. The goal of this project is to conceptualise and design such a
system.

The fundamental requirement for such a request system would be a dedicated service
request language that may be used to generate service requests based on the users
requirements. An important thing to understand is that a user’s request may span
several services. By this, we mean that a user may want a result that can only be de-
livered by a composition of multiple services. This composition is better described as
a business process which conducts a business transaction with a customer. Current
efforts at service composition are highlighted by the Business Process Execution Lan-
guage or BPEL [Andrews 2003]. It is used for pre-defining these business transactions
and processes into BPEL specifications that do not allow the customer the flexibility
to provide a request that requires a business transaction that is undefined. To satisfy
such a request, another BPEL specification has to be recreated manually. The Web
Service Choreography Description Language or WS-CDL [Pelz 2003] has also been
created to express an ordering of services belonging to different business organisa-
tions, but it also relies on a predefined or known composition of services.

Let us now consider an example to understand service composition. A customer
wants to buy a book, The Lost Symbol by Dan Brown and wants to pay less than $20 for
it via credit card. He describes his request in the request language and sends it to our
system. Based on the customers requirements, our system determines that it needs
to get information about the book, and its exact price (which must be less than $20)
from a book-seller service first. The system then needs to bill the customers credit card
by invoking the credit card billing service with the exact price of the book (assuming
that the previous step provided the price information). Provided that the customer’s
credit card details are registered in the request system and that the card is valid, the
billing service returns a receipt to our system.

At this point, a delivery service must be invoked, that physically delivers the book
from the book-seller to the customer’s address. The payment receipt is given to the
customer by the system and the delivery service eventually gets the book to the hands
of the customer. In this case we clearly see that the customer is only interacting with
the request system and is not aware of the services that are invoked by the system to
deliver the desired result. Such a system that gives a normal user access to any num-
ber of web services, can be safely described as a step forward towards the success of
SOC. Such a system provides users and machines alike, a single & new entry point
into the web services domain. Figure 1.1 shows clearly the sequence in which these
events happen.

One might argue that companies on the internet today provide websites that can
achieve this transaction for a customer, so why do we need another system for this ?
The answer to that question lies in the fact that companies that provide such transac-

. |
Web Service Book Seller VISA Credit Card = Delivery
Request System Service e Billing Service + Service
e e e e e e o e o — — .»
Request :
book =The Lost Symbol
author = Dan Brown, | | _ _getBookinfo()
price < $20] T T —= »
<Book Price, In@?_
| le——— """
| [_biI_ICLegtgaLdQ
sendReceipt() <Purchase Receipt>| 1 _ _ —————=
___________ N confirmPutchase()
).
| _ nitiateDelivery() | initateBookDelivery()
deliverBook()

Figure 1.1: Purchasing A Book Via The Request System

tions today are focused on their own products and therefore can only deliver a certain
range of products. This means that customers need to go to several different websites
to purchase different types of products. The request system that we conceptualise in
this thesis, solves that problem. It provides a single entry point for a customer to any
product on the internet, provided that the service that delivers that product is regis-
tered in the system.

The business case for such a request system must be considered as it shows exactly
how much potential such a system has. If this system were to be implemented, tested
and made road ready, it would be usable by any organisation or company that re-
quired deployment of their products in the form of web services. Multiple companies
could collaborate and use a single request system to provide all their services in the
internet marketplace. The current case of internet websites dedicated to single busi-
nesses, would become inherently obsolete. In the case of business to business transac-
tions, this system would also deliver well, because any service request, whether writ-
ten by a human or a machine would be treated equally by the system. By having a

4 An Introduction

standard request language, businesses also gain the potential to automate the request
specification stage. When that is achieved, we potentially will have implementations
of classical Al agents who provide services to customers and are fully automated.

What the system has achieved in the book purchase example is an automatic com-
position of 3 separate services, namely the book-seller, the credit card billing and the
delivery service. It has generated an ordering of service execution that defines the
sequence in which services must be invoked and what information needs to be given
to each service, along with what information is returned by each service. This order-
ing is called a service execution plan and it essentially represents a business process.
The system then executes this plan to actually invoke the services and complete the
business transaction. We can now identify the exact parts of such a request system.
The system would need an internal model for representation of information regarding
web services and requests made by users. A dedicated request language based on this
model would be essential, and a framework to process the requests and deliver results
to users would be mandatory.

To take a step forward in realising this vision of SOC, we introduce the Web Service
Request System (WSRS) and its associated language, the Web Service Request Lan-
guage (WSRL) in this thesis. We create and formalise a request oriented model for
web services that describes web services from the view point of service requests. We
also define the processes for creating instances of the model, generating a service exe-
cution plan, and executing the plan. We also provide algorithms that are part of these
processes as well as the ones that show how the service execution process and service
execution plan generation process operate.

Previous attempts have been made to create a request language and an associated
request system. The most important ones being the XML Service Request Language
[Papazoglou et al. 2002a] and the Framework for Web Service Query Algebra and Op-
timisation [Bouguettaya and Yu 2008]. However, they have implemented certain parts
of a request system, and have not concentrated on conceptualising and entire system
as such. We shall elaborate about them in Chapter 3.

The primary motivation for this project as we have mentioned before, was to further
the cause of web services and SOC. We therefore started off this project with the idea
of only creating a request language for web services and realised along the way that
the system associated with handling the requests specified in the language, was far
more important and had not been designed or implemented yet. We therefore set
out to design the entire concept of a web service request system and the processes,
algorithms and language associated with it.

§1.1 Project Goals & Scope 5

1.1

Project Goals & Scope

The primary goal of this project is to clearly conceptualise all parts of the request
system. This goal also comprises the following sub-goals :

1.

Modelling : This is the most important goal as far as the system is concerned.
Clear and well defined models need to be created for describing the services and
the users w.r.t the request system.

Creation Of The Language : A formalised language needs to be created based
on the models. The users of the system shall express their service requests using
this language.

Processes : The processes involved in creation of model instances, generation of
execution plans, and execution of these plans must be clearly defined.

Algorithms : The algorithms used in these processes must be clearly defined
and their time complexities specified.

Prototype Implementation : A proof of concept implementation must be cre-
ated to demonstrate the advantages of the approach used by this project.

The conceptual objectives of this project are as follows :

¢ Incorporate practical graph based techniques into approach, similar to the ones

described in [Bouguettaya and Yu 2008].

e Focus on modelling the service space, the user space and the problem space as

the models are integral to the practicality of the approach.

e Focus on pre-computing options that enable the system to reuse planning op-

tions during runtime and therefore reduce time to obtain results.

e Enable the user to express his request based on service functionality, capability

and quality.

The scope of this project primarily includes designing the request system so that fu-
ture work may concentrate on implementation and optimisation. A high level require-
ments specification for this project is provided in Appendix A.

6 An Introduction

Conventions Followed

A few conventions have been adhered to in this thesis. These are :

e We use the term Service and Web Service interchangeably. Although we agree that
there is a distinct difference between the two, for reasons of brevity and concise
expression we abuse notation throughout this thesis.

e We also use the Online Travel Agency (OTA) example which we elaborate in
Chapter 4, to demonstrate new concepts throughout the rest of this thesis. We
use this example to honour the convention followed by numerous published pa-
pers in the web services domain, that use this particular example to demonstrate
their ideas.

1.2 Contribution Summary

Summarising exactly what we have achieved in the course of this project, or rather
our exact contribution present in this thesis, we have :

e The Web Service Request Oriented Model : Used to describe web services and
the users of web services from the view point of service requests. There are two
parts of this model :

— The User State Model : Describes the user’s requirements with respect to web
services.

— The Service Description Model : Describes web services with respect to user
requests.

e The Web Service Request Language : Allows users to easily express service
requests spanning multiple services.

e The Web Service Request Framework : Contains processes and algorithms to
accept the service request, generate the service execution plan and execute the
plan.

Efforts were made to finish the prototype implementation for the system, but due to
restrictions in time it was not fully achieved. The exact achievements in this regard
are as follows :

e An XML Request Parser : This module (written in Java) takes an XML file
containing web service requests written in the web service request language
(WSRL), parses the file and creates a web service request as stated in Definition
7, using the request encoding process as stated in Algorithm 2.

e Object Oriented representations of each concept : All concepts introduced in
the request oriented model have been implemented as java classes with their
required attributes.

§1.3 Thesis Structure 7

1.3

Thesis Structure

The rest of this thesis is organised as follows :

Chapter 2 : In this chapter we provide a brief introduction to the fundamental
concepts of service oriented computing and the technologies involved in the
web services domain.

Chapter 3 : We discuss the previous attempts at creating a request system i.e.
XSRL and the Query Framework in this chapter.

Chapter 4 : We provide a detailed service domain example of the Online Travel
Agency that we use to demonstrate concepts in the rest of the thesis.

Chapter 5 : We introduce, describe and define all the parts of the web service
request system that we have designed.

Chapter 6 : We discuss future work possibilities regarding the request system
and provide a conclusion for our work in this thesis.

As a note to readers of this thesis, we would like to mention that Chapter 2 is purely
based on describing all the technologies required to implement and use web services
in general, along with ideas of service oriented and cloud computing. Therefore, if
readers are well versed in these concepts, they may skip this chapter. However we
would recommend reading it as it leads up to eliciting needs or requirements for the
request system.

1.4

Research Plan

This project was carried out adhering to the following research plan :

1.
2.

Investigate all technologies, standards concepts relating to web services.

Try to find related publications that attempt to create or describe a similar system
or parts of it.

Understand what has already been done with regards to the system.

Properly create a finite scope for the project and clearly define what is not in-
volved.

Define precise goals of the project.

Collaborate with supervisor to create new material that fulfil the goals of the
project.

Test whether the new material is feasible using examples.

Write thesis about work done on project.

An Introduction

Chapter 2

Background

2.1 Service Oriented Computing (SOC)

An emerging trend today is that of service oriented computing or SOC. It is an attempt
to provide a framework that gives Internet business providers the ability to encapsu-
late their products into a self-describing service. The description of this service can
then be published in a common registry. Customers that want a desired product or
functionality may then obtain the relevant service description from the registry and
invoke it. [Papazoglou 2008] describes a service as a self-contained module - deployed
over standard middle-ware platforms - that can be described, published, located, or-
chestrated, and programmed using XML-based technologies over a network. This
creates a plethora of possibilities for existing computing resources to be reused into
this new paradigm of software as a service.

The functionality of a service can range from a simple request for information to a
complex business transaction. Therefore this generic abstraction of services can be
mapped to a vast number of business domains making it widely adoptable. In a way,
SOC enforces a component based architecture to any business domain where compo-
nents may be loosely coupled and highly modular. This greatly increases the replace-
ability factor of business functionality units. Considering the vast range of businesses
that provide similar functionality over the Internet, SOC provides a means of select-
ing the ones that are most appropriate for the consumer.

Another promising aspect of SOC is the fact that it isn’t a completely new technol-
ogy. It is an amalgamation of various existing principles in computing including
distributed systems, software engineering principles, computer networks, common
Internet standards such as XML and HTTP, web applications etc. [Papazoglou and
Georgakapoulos 2003] says that the value of an application is actually no longer mea-
sured by its functional capabilities but rather by its ability to integrate with its sur-
rounding environment. SOC capitalises on this fact and ensures that services priori-
tise on collaborating with other services.

10 Background

2.1.1 SOC: The Future

The Internet comprises of a vast number of systems and applications that offer a di-
verse range of functionalities. These systems have been created mostly using different
architectural styles and technologies in isolation without contemplating their possible
use in conjunction with other systems. At present if we need to obtain an artefact or
result, the path to obtain that result might span a set of different functionalities of-
fered by different business providers, our only option is to create a new system that
delivers the result rather than reusing present resources due to disparity in the way
the resources have been created initially.

One of the most important concepts in software engineering is that of code or software
reuse. While it can be generally applied in small systems today, it cannot be applied to
large scale business domains. SOC provides the solution to this problem. It provides
a medium for disparate systems or businesses to interact and deliver a compound
result. It enables software reuse at a very large scale and that is exactly why it is
widely considered as the future of internet business.

2.1.2 Moving to the cloud

Putting things in a broader perspective, the cloud computing paradigm fits well with
the idea of Software As A Service or Platform As A Service. [Buyya et al. 2008] defines
a cloud as a type of parallel and distributed system consisting of a collection of inter-
connected and virtualised computers that are dynamically provisioned and presented
as one or more unified computing resources based on service-level agreements estab-
lished through negotiation between the service provider and consumer.

Cloud computing covers both software clouds and hardware clouds alike and several
companies have recently started providing cloud computing facilities. For e.g. the
Amazon Elastic Compute Cloud [Amazon 2008] and the Microsoft Live Mesh [Mi-
crosoft 2008] are clouds that provide computing and storage facilities and are there-
fore hardware clouds, whereas the Google App Engine [Google 2008] provides web
application hosting facilities and is therefore a software cloud.

Therefore, we see that the focus on computing utilities is shifting (or has almost shifted)
from individual computers to computing clouds. There are several reasons for this
massive change. First of all, the internet is growing at an exponential rate and is
widely available now. Access to the internet is no longer a privilege for the average
computer user. Most importantly, computers and essential services offered by com-
puters such as communication, media, information , utility etc. have now become as
much a part of our lives as gas and electricity.

As a result, consumers also require access to these services regardless of their location
in the world, as long as they have access to the internet. A combination of these factors
has shifted the scale towards service oriented computing in the cloud.

§2.1 Service Oriented Computing (SOC) 11

2.1.3 SOC Implementation : Services in the cloud

The best way to demonstrate these concepts is by an example. We shall consider an
online travel agency (OTA, a classic example used to demonstrate the utility of SOC).
It may offer several services to its customers including flight booking, car rental, ho-
tel booking or the entire travel package. Now, for a business to create such an on-
line travel agency from scratch, it would have to create the entire infrastructure from
scratch and make deals with a set of other businesses that may provide necessary
functions such as flight booking, car rental, hotel booking etc. With the help of SOC,
this process of making deals with other businesses could be immensely simplified and
made more dynamic.

Figure 2.1: A Service Cloud Example

Each of these businesses could publish its functionality as a service description in
a service registry. This registry can be visualised as a tracker for available services.
When the OTA would receive a request from a customer to book a certain flight for
less than a certain amount of money, it would merely query the service registry for

12 Background

the most appropriate flight booking service available at the time, offering the desired
rates, and invoke that service to obtain the flight booking which it would then for-
ward to the customer.

In this example, all the individual services (flight booking, credit card etc) that have
their descriptions published in the service registry, form a cloud of services. The OTA
is merely demarcating a subset of the cloud and offering customers an aggregated ser-
vice i.e. the entire holiday package. What this facilitates is exactly why SOC is very
important, business to business interaction and software reuse.

Figure 2.1 appropriately describes this example. Here we define the customer as a
service consumer, the OTA as a service aggregator that acts as a service cloud, and the
organisations providing the services that are part of the cloud as service providers.
These three roles are fundamental to SOC and compose the service oriented architec-
ture or SOA.

The figure also shows that the service cloud utilises the compute and storage clouds
offered by other organisations. This gives the service providers the freedom of not
worrying about hosting their software implementation of their services on their own
servers. This abstraction allows service providers the privilege to concentrate on their
business logic rather than hosting issues, and therefore provide better quality of ser-
vice to consumers.

2.2 Web Services

SOC is an architectural concept and is independent of technology as such. To realise
SOC, the web service [Alonso et al. 2003] technology is used. Web services allow
the presentation of service functionalities in an accurate way. [Papazoglou 2008] de-
fines a web service as a self-describing, self-contained software module available via
a network, such as the Internet, which completes tasks, solves problems, or conducts
transactions on behalf of a user or application.

Web services can provide any sort of functionality, static or dynamic. They provide a
black box abstraction for services i.e. all implementation details are hidden from the
consumer who only provides inputs and receives an output or result. Web services
provide a platform independent way of accessing functionalities using interoperable
and widely established protocols such as XML and HTTP. They can also reuse other
web services to provide results, as per SOC principles.

It is important that we now state the exact differences between a web service and a
service. A service is an implementation of some functionality that can be used to pro-
duce artefacts or results. Customers pay money to obtain these results. A Web Service

§2.2 Web Services 13

is mainly a description of one service or multiple services that outlines exactly what
functionality is provided by the service/s. It also defines the Quality Of Service (QoS)
that provides important information (for the customer) such as price, security, relia-
bility, availability etc. of the service. Finally a web service describes exactly how a
service can be invoked, including the network address, protocols and parameters re-
quired for invocation. Summing up, a web service is a semantic wrapper for a service
that describes what the service does and how we can use it. Figure 2.2 gives an exam-
ple of this difference.

Describes

A Service

S oo o oo

A Web Service

Figure 2.2: The Difference Between A Service And A Web service

Web services come in different flavours. [Papazoglou 2008] classifies web service in
two categories :

1. Simple/Informational : Support simple request/response operations

2. Complex : Implement some coordination between inbound and outbound oper-
ations

We can decompose each of these categories into subcategories and describe them by

means of an example.

Simple/Informational services
1. Pure content services : A weather report information service
2. Simple trading services : Business logistic services e.g. an inventory report service

3. Information syndication services : A value added commerce service e.g. a rating
service

14 Background

Complex services
1. Complex services that compose simple web services : inventory checking service

2. Complex services that compose interactive web services : An online travel agency
service

We shall concentrate on such complex services that are compositions of other interac-
tive or simple services, throughout this thesis.

Functional & Non-Functional Characteristics

The operational properties of a web service are known as its functional properties.
For e.g. for a flight booking service, the ability to book a flight is a functional property
of the service. Similarly, the non-functional properties of a web service are those that
are based on its quality attributes such as cost, response time, availability etc. These
properties determine which service is chosen by a consumer from a list of services
with similar functional characteristics.

2.3 Building Blocks : The Web Service Technology Stack

The fundamental technologies required to implement and use web services can be
best described in the form of a stack shown in Figure 2.3.

——————————————————————

! \ ~
| [CDL4WS] : [Collaboration

| | y
: : ~
i [BPEL4WS J i [Business Processes

| : /
I 1 N\
i [WS-Policy] i [Quality of Service

: | <
i (UDDI] i [Discovery)
| |

i (WSDL j i [Description)
i :

| (SOAP] i

i : Message

: (XML J I

| |

i (HTTP, JMS, SMTP) : [Transport J
| |

\ 1

Figure 2.3: The Web Service Technology Stack

We shall now describe each level in the stack starting from bottom up.

2.3 Building Blocks : The Web Service Technology Stack 15

2.3.1 The Transport Layer

Common protocols used to transfer data over the internet such as the hyper-text trans-
fer protocol (HTTP) are part of the transport layer. Although web services do not
specifically tie themselves to any protocol, they build on the commonly used ones
such as HTTD, to ensure wide reachability and support.

2.3.2 The Message Layer

We can only interact with web services (i.e. invoke them) via messages that are written
in XML and are defined by the simple object access protocol (SOAP).

2.3.21 XML

All web service technologies are based on XML or the Extensible Markup Language.
XML is a w3c (World Wide Web Consortium) standardised protocol for the description
and delivery of marked up electronic text over the Internet. XML stands out compared
to other mark up languages due its portability. The same character encoding scheme
is used for all XML documents. Namespaces are used in XML to distinguish between
local and global tags and elements. Also, an XML Schema is used to define the content
and structure of a class of XML documents.

2.3.2.2 SOAP

A messaging protocol for exchanging information between web services is a funda-
mental requirement. SOAP [W3C 2003] addresses that requirement. It is an XML
based communication protocol meant for exchanging messages between computers.
It is independent of operating system or programming environment . HTTP is most
commonly used as its medium of transport, but other protocols such as SMTP,FTP or
RMI may also be used.

SOAP supports both one way and two way messaging between web services. A SOAP
client is used to encode an XML message for dispatching and a SOAP server receives
this message, decodes it to programming language specific objects required and de-
livers it to the receiving web service. Both the sender and the receiver must have the
same XML schema’s to process the SOAP information accurately.

A simple SOAP message may look like this [W3C]:

<soapenv : Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/”
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing”>
<soapenv : Header>
<wsa: ReplyTo>
<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/
addressing/role/anonymous</wsa: Address>

16 Background

</wsa:ReplyTo>
<wsa : From>
<wsa: Address>http://localhost:8080/ axis2/services/
MyService</wsa: Address>
</wsa: From>
<wsa: MessagelD>ECE5B3F187F29D28BC11433905662036
</wsa:MessagelD>
</soapenv : Header>
<soapenv : Body>
<req:echo xmlns:req="http://localhost:8080/
axis2/services/MyService/”>
<req:category>classifieds </req:category>
</req:echo>
</soapenv : Body>
</soapenv : Envelope>

The three main parts of a SOAP message as demonstrated by this example are :

1. <Envelope> : This is a container element for the soap message and shows what
is in a message and how it can be processed.

2. <Header> : The header contain information about destination and origin of the
message.

3. <Body> : This is the message payload or application specific data that this
message carries.

2.3.3 The Description Layer

For web services to be machine consumable i.e. to effect business to business trans-
actions as per the SOC vision, a standardised description language must be used to
create descriptions of web services. These descriptions must also be self contained i.e.
a consumer or a machine must not require any extra information to interpret the func-
tionality, invocation details of a web service. To address this need, the Web Service
Description Language or WSDL [Christensen et al. 2001] was created and standard-
ised by the w3c.

2.3.3.1 WSDL

WSDL is also based on XML and is used to define a public interface for a web service
that acts as a binding contract between a service provider and a client. Conforming
with SOC, WSDL is also platform and language independent. In essence, a WSDL
description of a web service answers three basic questions :

1. What functions does the web service provide ?
2. Where can the web service be found on the Internet ?

3. How can the web service be invoked ?

2.3 Building Blocks : The Web Service Technology Stack 17

There are two parts to a WSDL specification of a web service :

1. The service interface definition : This abstract definition of a web service is used
to define the operations supported by a web service and the messages and data
types used in these operations

2. The service implementation definition : This concrete definition of a web service is
used to define the network location and invocation details of a web service.

We now explain parts of the interface and implementation description via an example
of a simple web service that provides stock quotes [W3C 2001] :

The Interface Description

The StockQuoteService WSDL interface description is given below :

<?xml version="1.0"?>
<definitions name="StockQuote”
targetNamespace="http://example.com/stockquote . wsdl”
xmlns: tns="http://example.com/stockquote . wsdl”
xmlns: xsd1="http://example.com/stockquote . xsd”
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/”
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<schema targetNamespace="http://example.com/stockquote.xsd”
xmlns="http:/ /www.w3.org/2000/10/XMLSchema”>
<element name="TradePriceRequest”>
<complexType>
<all>
<element name="tickerSymbol” type="string”/>
</all>
</complexType>
</element>
<element name="TradePrice”>
<complexType>
<all>
<element name="price” type="float”/>
</all>
</complexType>
</element>
</schema>
</types>

<message name="GetLastTradePricelnput”>

<part name="body” element="xsdl:TradePriceRequest”/>
</message>
<message name="GetLastTradePriceOutput”>

<part name="body” element="xsdl:TradePrice”/>
</message>

<portType name="StockQuotePortType”>
<operation name="GetLastTradePrice”>

18 Background
<input message="tns:GetLastTradePricelnput”/>
<output message="tns:GetLastTradePriceOutput”/>
</operation>
</portType>

</definitions>

The description begins with a declaration of XML namespaces that are used and that
the default namespace is of WSDL found at http://schemas.xmlsoap.org/wsdl/. We now
explain each part of an interface description citing bits of the example above.

e <types> : This section describes all the abstract data types that are used to

describe artefacts of a web service. In this particular example, we see that there
are two abstract data types that have been defined, TradePriceRequest which has
an attribute "tickerSymbol’ of type "string” and TradePrice which also has a single
attribute "price” of type "float’.

<message> : Each message element describes an input or output message that
may be sent or received respectively, from a web service. In this example, two
messages have been defined, GetLastTradePricelnput which contains its data or
payload of type TradePriceRequest and GetLastTradePriceOutput which must have
data of type TradePrice.

<portType> : This element is a container for the operations supported by a
web service. It can be compared to a Java interface which has method declara-
tions. This is the most important element of a web service description and the
rest of the elements are usually required to define parts of this element. In this
example we see the StockQuotePortType which has an operation named 'GetLast-
TradePrice’.

<operation> : An operation element contains only one input message and one
output message. A web service is invoked when an input message is sent to
one of its operations and it returns a response to the invocation by delivering
an output message. It may also deliver a fault message that describes an error
that might have occurred during execution of the operation. In our example we
see that the GetLastTradePrice operation is described with its input and output
messages. A fault message is not specified here.

The Implementation Description

The StockQuoteService WSDL Implementation description is given below [W3C 2001]:

<?xml version="1.0"?>
<definitions name="StockQuote”
targetNamespace="http://example.com/stockquote . wsdl”

xmlns: tns="http://example.com/stockquote . wsdl”
xmlns: xsd1="http://example.com/stockquote . xsd”
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/”
xmlns="http://schemas.xmlsoap .org/wsdl/”>

2.3 Building Blocks : The Web Service Technology Stack 19

<binding name="StockQuoteSoapBinding” type="tns:StockQuotePortType”>
<soap :binding style="document”
transport="http://schemas.xmlsoap.org/soap/http”/>
<operation name="GetLastTradePrice”>
<soap:operation soapAction="http://example.com/GetLastTradePrice”/>
<input>
<soap :body use="encoded” namespace="http://example.com/stockquote”
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”/>
</input>
<output>
<soap :body use="encoded” namespace="http://example.com/stockquote”
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”/>
</output>
</operation>
</binding>

<service name="StockQuoteService”>
<documentation>The Stock Quote Service</documentation>
<port name="StockQuotePort” binding="tns:StockQuoteSoapBinding”>
<soap:address location="http://example.com/stockquote”/>
</port>
</service>

</definitions>

Yet again we find the namespace declarations beginning the description. We now
explain each part of the implementation description citing bits of the example above.

e <binding> : This is the most important element of the implementation de-
scription. It is used to describe how the customer and the web service should
exchange messages. Each binding element maps to one portType element of the
interface description. It can be visualised as a Java class that implements a java
interface interface and provides the implementations for the operations declared
in the interface. In this example we see that the StockQuoteSoapBinding binds
to the StockQuotePortType. It mentions that a "document” style SOAP message
must be transported via HTTP to the ‘GetLastTradePrice” operation available at
http://example.com/GetLastTradePrice/. The input and output types here represent
the SOAP encoding styles and namespace to be used for the input and output
data types defined in the interface description.

e <port> : This element provides a combination of the network address at which
a web service is available and its corresponding binding information to its ab-
stract description. Here we see that there is only one port element StockQuotePort

which specifies that the StockQuoteService is available at http://example.com/stockquote

and the operation provided at this port of the service is defined by the portType
StockQuotePortType as the StockQuoteSoapBinding, specified here, binds to that

port type.

e <service> : This element is composed of one or more port elements and has
a unique name. In this example it is StockQuoteService. The ports of a service

20 Background

element therefore provide the actual operations to consumers.

2.3.3.2 The Separation between Interface and Implementation

This is a very important facet of web services. The abstraction provided by allows
the two parts of a web service description to be developed separately. The interface
part can possibly be developed by an organisation that wants to act as a manager of
multiple services. A simple example would be the Online Travel Agency (OTA). It
would have to develop interfaces for the airline booking service, the railway booking
service, the credit card service and so on. Different service providers could in turn
receive these interface definitions and provide their own implementation definitions
to the OTA.

What this achieves is more choice for the consumer. The types of services provided
by the OTA would be a few, but the services that implement these few types could be
many. The service providers could choose to implement their service types in what-
ever way required, whether by implementing them entirely, or outsourcing parts to
other providers.

2.3.4 The Discovery Layer

This layer defines the entry point for a service consumer to the web service domain.
Consumers can only invoke or utilise web services when they have WSDL descrip-
tions. All consumers also have specific needs that they need to fulfil via web services
and therefore they need to find services based on these specific needs. The service
discovery layer provides consumers with the means to query a database of service
descriptions and find the right match. This layer provides service registries such as
the UDDI.

2.34.1 UDDI

The Universal Description, Discovery and Integration or UDDI [Bellwood et al. 2002]
provides an interface that service clients can use to dynamically search for desired
web services (WSDL Descriptions) using keywords that may describe the service in
some way. Service providers are required to register their WSDL descriptions for their
services with UDDI beforehand. UDDI is also based on SOAP,XML and all requests
and responses to and from UDDI are in the form of SOAP messages.

2.3.5 The Quality of Service Layer

The important part in the WS technology stack from a service clients perspective is
the Quality of Service or QoS. It reflects the ability of a web service to perform and de-
liver according to pre-determined expectations. Parameters of QoS cover both func-
tional and non-functional service quality attributes. Based on the QoS properties a
Service Level Agreement or SLA [Jin et al. 2002] is drawn up between the client and

2.3 Building Blocks : The Web Service Technology Stack 21

the provider, which acts as a QoS formal agreement or guarantee. It reflects the ex-
pectations of both the client and the provider in the form of a contract.

2.3.5.1 QoS Attributes

[Mani and Nagarajan 2002] provides a comprehensive description of QoS attributes :

o Awvailability : It can be described as the probability of the service being available at
a certain time. The absence of service downtimes increases this probability. An-
other measurement associated with availability is time to repair or TTR which is
the average time required to repair the service after it has gone down.

o Reliability : It represents the ability of a service to deliver the correct functionality
in a consistent manner. It also represents the service’s dedication to delivering
the same quality despite interruptions such as a network failure.

e Security : Aspects such as authentication, authorisation, message integrity and
confidentiality are part of security.

o Accessibility : It represents the degree with which the web service request is
served. High availability shows that the web service can serve many clients
at a time.

o Integrity : It describes the conformance of the web service with its WSDL de-
scription and the SLA agreement.

o Conformance to Standards : Describes the compliance of the web service with stan-
dards and versions of standards mentioned in the SLA.

o Performance : Performance is measured in terms of

— Throughput : Number of web service requests served in a given time period.
Higher values represent good performance.

— Latency : Time elapsed between a request to and a response from a web
service. Lower values represent good performance.

o Scalability : Describes the ability to consistently serve requests independent of
the volume of incoming requests.

e Transactionality : Describes the degree of transactional behaviour demonstrated
by the web service.
2.3.5.2 Service Level Agreement (SLA)

An SLA on the other hand formalises the client-provider details associated with a web
service such as price, delivery process, acceptance, quality criteria, penalties etc. [Jin
et al. 2002] decomposes an SLA into the following parts :

22 Background

e Purpose : The reason behind the creation of the SLA.

e Parties : Describes the client and provider of the web service.

e Validity Period : Details when the SLA will expire.

e Scope : Details the web services covered by the SLA.

e Restrictions : Describes any necessary constraints on the services.

e Service-level Objectives : Describes the service level QoS objectives that need to be
upheld by the service.

o Penalties : Describes consequences of the service provider failing to provide the
service according to terms in SLA.

e Optional Services : Details any optional services that may be required in the pro-
cess.

o Exclusion Terms : Details what is not covered in the SLA.

o Administration : Describes the organisational authority that may alter the SLA.
SLA’s can be :

e Static : Remains unchanged for multiple service transactions.

e Dynamic.: May change from transaction to transaction.

SLA’s and QoS attributes are expressed using the Web Service Policy Framework (WS-
Policy) [Bajaj 2006].

2.3.6 The Business Processes Layer

As we have mentioned before, web services are either simple or complex. A complex
web service delivers a result that might require participation of several simple web
services. However, when we talk of a business transaction between a company and
a consumer, we cannot always model the entire business as a complex web service.
Such a transaction may be composed of several complex services at different points
in the transaction. Such an explicit sequencing in web services that achieves a purely
business goal is defined as a business process. The Business Process Execution Lan-
guage or BPEL was created to model such business processes.

2.3.6.1 BPEL4WS : Web Service Orchestration

BPEL4WS or BPEL in short is an XML based flow language for the formal specifica-
tion of business processes and interaction protocols. BPEL is also used as a means of
web service orchestration which describes how the web services interact at a message
level, including the business logic and execution order of the interactions from a single

§2.4 Web Service Composition 23

service’s perspective [Pelz 2003]. Two other protocols exist that assist in the orches-
tration of services. They are WS-Coordination [Cabrera 2005b] and WS-Transaction
[Cabrera 2005a]. They complement BPEL to provide standard protocols for use in
orchestration.

2.3.7 The Collaboration Layer

Moving on to a higher layer of abstraction we find that care needs to be taken to de-
fine exactly how business processes that belong to different organisations interact with
each other. The collaboration between different business organisations to provide a an
ordering in business processes (and in turn services) can be broadly termed as chore-
ography between the services offered by the organisations. The global communication
between these processes needs to be well defined, in order for a deterministic result
each time. For this purpose, the Web Service Choreography Description Language
was created.

2.3.71 CDLA4WS : Web Service Choreography

CDL4WS or WS-CDL or the Web Service Choreography Description Language is used
to define global communication between services from different business organisa-
tions, their rules of interaction, and the binding contracts that form between multiple
business processes. WS-CDL can be used to track all the communication and transac-
tion between all the parties involved in the business transaction, such as the client, the
partners, suppliers, distributors, providers, etc. It offers a medium through which all
the rules and agreements between all the collaborators can be accurately laid out and
agreed upon [Pelz 2003]. Once a WS-CDL specification is approved, it can be used to
generate BPEL4WS [Andrews 2003] work-flows for all parties involved which in turn
can be used to execute the business transactions.

24 Web Service Composition

Now that we have enough information about how an atomic (simple) web service
is described and defined, we move on to understanding how multiple atomic ser-
vices can be composed to form a complex web service or a business process. We have
seen that BPEL is focused on describing the execution of web services where the ac-
tual composition or the sequencing of the services are known before hand i.e. before
the BPEL execution plan is created. WS-CDL defines the global message exchange
between services or processes that belong to different organisations. Again, CDL de-
pends on the fact that this service interaction behaviour between organisations is well
defined before a CDL specification can be created. The challenge lies in automating
this composition process and generating CDL and BPEL specifications based on the
automatically generated composition.

24 Background

Automated web service composition is the most important hurdle that needs to be
overcome for the eventual success of SOC. As we have described previously, web ser-
vices have a component based architecture that eases service reuse. A complex or
compound business goal could be composed of several different business activities
spanning several organisations. Web services that encapsulate these business activi-
ties are offered by these organisations. Therefore, to achieve this business goal, multi-
ple services need to be composed into a single business transaction.

What we need to understand here is that the technologies specified in the stack, do not
provide any scope for automatic or semi-automatic service composition techniques.
To achieve automatic composition, a semantic description of each service is required that
provides information about what pre and post conditions are involved with respect
to a web service being invoked. Efforts have been made by the semantic web services
community to create these semantic descriptions in the form of ontologies.

2.4.1 Service Semantics : The Ontology Approach

An Ontology is a representation of knowledge in general and is used to define re-
lationships between separate entities. Ontologies when applied to web services, are
described best as meta-models for web services that provide meta-data information
i.e. the service semantics. The vision of the semantic web by Tim Berners Lee (in-
ventor of the internet), is a vision of the future of the web in which information has
machine understandable meaning.

The semantic web is based on XML and the Resource Description Framework or RDF
[W3C 2004] which is used to describe relations between URI’s (Universal Resource
Identifiers, an e.g. is a URL of any web page). A level above RDF, we have the Web
Ontology Language or OWL [McGuinness and Harmelen 2004]. OWL is used to for-
mally describe the meaning of terminology used in web pages and documents. A
brand of OWL is OWL-S, which is OWL for Services that provides machine under-
standable meaning for terminology related to web services. Another such ontology
for services is the Web Service Modelling Ontology or WSMO [Roman et al. 2005].

24.11 OWL-S

OWL-S [Martin et al. 2004] is primarily designed to provide semantic markup for
web services. It provides a basis for automatic service discovery, invocation and com-
position. It provides an upper ontology for services that has the service profile (the
interface), the service grounding (the implementation) and the service model which
describes the parts of the service itself. The service profile also contains information
describing the functionality of a service such as the inputs required, the output gener-
ated, the preconditions for the service and the result of the service being invoked.

§2.5 The Web Service Usage Scenario 25

2412 WSMO

Similar to OWL-S, the web service modelling ontology provides conceptual and for-
mal constructs for semantically describing all relevant aspects of web services. [Ro-
man et al. 2005] describes the 4 main elements of WSMO as :

1. Ontologies : Provides description of the terminology used by the other WSMO
elements. Used to describe the relevant and syntactic aspects of the domain of
discourse in a machine understandable manner.

2. Web Services : Represent information about the actual web service descriptions
and the service capability and functionality.

3. Goals : Describe aspects related to the desires of users of the service. This element
provides a model for the user’s view in the service usage process.

4. Mediators : These elements handle all the problems of interoperability between
the other elements of WSMO.

Therefore we see here that OWL-S and WSMO provide us with some basis for auto-
matic composition of web services to be realised.

2.5 The Web Service Usage Scenario

Now that we know how web services and business processes that integrate multiple
web services are described, we can move on to understanding how web services are
currently used by an independent consumer. The service oriented architecture pro-
vides a distinct process that is followed by the three parties involved in a web service
transaction or usage instance. This process is cyclic in nature and can be described
simply as the publish-find-bind cycle shown in Figure 2.4.

The three main phases of this transaction/process are :

1. Publish : The service provider (Amazon, in this example) creates an implemen-
tation of a service that it wants to provide to consumers. It then creates the
WSDL descriptions of this service (interface and implementation) and publishes
these descriptions in a service registry (UDD], in this example). This is the ser-
vice description and creation phase.

2. Find : The service customer/consumer/client (Mr. John Smith, in this example)
goes to the service registry and finds the WSDL description of the service he is
looking for. This is the service discovery phase.

3. Bind : The service consumer then uses the WSDL implementation description
that he has obtained from the registry to understand and compose a SOAP input
message for the service operation (and portType) that he wants to invoke and
get a response from. He then sends this SOAP message to the network address

26 Background

ubpDI
Service Registry

Contains WSDL
Descriptions
Find Publish

Bind

Provides Service

Implementation
S —

Mr. John Smith
Service Requestor

C.
Service Provider

Figure 2.4: The Web Service Usage Process

provided the in the WSDL implementation description and awaits a response.
This phase describes the binding between the consumer and the provider and is
the actual service usage phase.

We can now see that the entry point for a service consumer into the service domain is
the service registry. We also see that it is a time consuming process for the service con-
sumer to manually find the service description (according to his requirements), and
then bind with the service provider to obtain a result.

What we must also understand is that the consumer might want a result that might
require performing several such transactions with several different services. For e.g.
if the consumer is after a holiday package, he has to find and bind to all the services
required to build the package such as airline booking services, hotel booking services,
car rental services and so on. Of course, he might create a BPEL specification for per-
forming these transaction in the sequence he wants, but that would require him to
know the semantics of BPEL and exactly how to write a BPEL specification. We al-
ready discounting the fact that the consumer has to know about WSDL, SOAP, UDDI
and the rest of the WS technology stack, for him to perform a find and bind with a
service.

It is reasonable to assume that a normal consumer (Mr. John Smith for example) might
have very little knowledge about the technologies used to describe, use and compose
web services.

§2.6 The Need For A Request System 27

2.6 The Need For A Request System

The future of SOC depends on the usability of web services. As we have seen, it is
quite difficult for a consumer with little knowledge about the web service domain to
use web services, which in turn renders the usability of services to being very low.
The challenge now is to create a request system that :

o Abstracts the user from all the necessary terminology and knowledge required
to use web services.

e Provides enough details about available services and what parameters (input
information) are required to invoke them.

e Provides the user with a platform and request language to express a service
request (i.e. An expression of what the user wants to achieve from invoking
web services, similar to WSMO Goals).

e Automatically generates a service composition i.e. an execution plan by inter-
acting with available web services

o Invokes the web services that are part of the execution plan in proper sequence
and obtain a final result

e Returns the result or service response to the user.

The figure below describes this vision of a web service request system and a normal
users interaction with it.

Web Service
Request System

Service Result

Figure 2.5: The Vision of the Web Service Request System

28

Background

2.6.1 Creation of the Request System : Research Challenges

Not to mention, creation of such a request system poses a significant number of re-
search challenges. The primary ones are described as follows :

Creation of service and user models that describe exactly what a user might
want to request from a service and how the service might respond to a request

Creation of a service request language based on the service and user models,
that can be used to describe a service request.

Automatic or semi-automatic discovery of services that may be used to fulfil a
request

Automatic or semi-automatic composition of services and generation of a ser-
vice execution plan based on the composition.

Execution of the services in sequence described in the execution plan to obtain
results

Previous attempts have been made to address some of these challenges, which are
describe in the next chapter.

Chapter 3

Related Work

3.1 Request Systems and their languages

After many papers and considerable research, we found two very relevant but differ-
ent approaches to implementing parts of a request system.

3.1.1 XSRL

In 2002, Papazoglou, Aiello, Pistore and Yang published two papers on XSRL [Pa-
pazoglou et al. 2002a] [Papazoglou et al. 2002b] and then another one with Carman,
Serafini and Traverso [Papazoglou et al. 2002] in the same year. They proposed a re-
quest language based on XML, and the corresponding system based on Al-planning
and constraint satisfaction. They had named it XSRL or the XML Service Request Lan-

guage.

XSRL was targeted to be expressive enough for the user to be able to express his/her
objectives clearly and unambiguously. It was an amalgamation and extension of con-
structs from the XQuery [Boag et al. 2002] language and EaGLe [Lago et al. 2002], a
formal Al planning language.

A basic XSRL request was of the following form :

request ::= '<XSRL>’ request_expression goal_formula ’</XSRL>’
A basic request_expression would have the form :

request_expression ::= ’'<Request>’ FlwrExpr ’</Request>’

Here the FLWR sub expression represents the FOR, LET, WHERE and RETURN state-
ments. Further details of BNF grammars specific to the above predicates are given in
[Papazoglou et al. 2002a].

29

30 Related Work

A typical XSRL request would look like [Papazoglou et al. 2002a],

<ESRL>
<IQUERY> {

FOR $2 in document (FkgTravelSepgment.xml)//AirSegment

[CarrierName = "“Alitlaia™| "United Airlines" AND
Departurefirport = "NewYork™ AND
ArrivalAirport = "Rome" | "Venice" AND

(Price <= BO0 AND Price »=B00) AND

SeatQty = 3 AND

ArrivalDate = "1 Jumne, 2002" AND
DepartursDate = "10 Jun=s, 2002"]
RETURHN

<Arrivaldirport>{ $a/Arrivaldirport}</Arrivaldirport>
<price>{ $a/pricel</price>

<ArrivalDate>{ $a/ArrivalDate}</ArrivalDate>
<Departurelate>{ $a/DepartureDate}</DepartureDate>
<HotelList> {

FOR $h in document (hotelReference.xml)//HotelReference

[ChainHotel = "Hilton"]

WHERE ($h/Area =%a/Arrivalfirport AND
$h/HotelArrivalDate = $a ArrivalDate + 1 AND
$h/HotelDepartureDate = $a/DepartureDate 1)

RETURH

<Hotellleme>{ $h/HotellName }</HotelName>
“HotelAddress>{ $h/HotelAddress }</Hoteliddress>
}</HotelList>
}</XQUERY>
<GDAL>
<Then*<Vital*receive_confirmation($a) </Vital>
<Optional* receive_confirmation ($h)</Optiomal></Then>
</GOAL>

</XSRL>

Figure 3.1: An XSRL Example Request

We can see clearly here that this request is directed to a travel agency, aimed at getting
confirmation for 3 Alitalia or United Airlines air tickets from New York to (Rome or
Venice) departing on the 1st of June and returning on the 10th. It also requests a list of
hotels , Hilton if possible, in that area, which have rooms available in that time period.

The request is encoded into a constraint satisfaction problem with all the information
in the request described by different variables of the problem. This is then passed to
the Al planner which generates an execution plan. The plan is then passed on to the

3.1 Request Systems and their languages 31

executor which invokes the required services to produce a result.

Alexander Lazovik continued research with Papazoglou and Aiello on XSRL and sub-
mitted his doctoral thesis on ”Interacting with Service Compositions” in 2006 [La-
zovik 2006]. He considerably extended the previous work done and provided full
grammars and constructs related defining XSRL. He has also developed parts of the
XSRL request system which includes :

e A Monitor : Coordinates the planner and executor, i.e. interleaves planning and
execution.

o A Planner : Produces the service execution plan

e An Executor : Execute the plan to generate the result

The architecture is also dynamic, in that it takes into account changes made in the
request, or environmental constraints and user interaction. The monitor is specifically
designed to interleave planning and execution, which provides feedback to the user
during execution, which is also critical to the service usage process.

3.1.2 Framework for Web Service Query Algebra and Optimisation

Bouguettaya and Yu present a different view point to the same topic in their paper
published last year [Bouguettaya and Yu 2008]. They present a query algebra which
is similar to a request language and based on logic predicates. The query algebra pro-
poses to provide optimised access to web services based on their “functionality” and
”quality”. The queries are highly service-oriented. The algebra is based on a formal
service model that provides a high level abstraction of web services across a generic
application domain.

The product generated after a query is supplied, is a service execution plan or an SEP.
This plan could be used by a consumer to access the desired services to get the de-
sired result. The approach taken to generate this plan is graph based. Directed service
graphs with service operations as the nodes are created and the appropriate work
flow is extracted from the graph, based on the given query. Details of all the algebraic
operators used in the entire process are provided. The paper also includes an optimi-
sation algorithm that extends the dynamic programming approach to efficiently select
the SEP’s with best user-desired quality.

Their main aim was to layout a theoretical background for the development of a web
service management system(WSMS) that would be to web services as Database man-
agement systems are to data. Specific contributions of the paper include :

o A Service Query Model : Based on a formal service model that captures function-
ality, behaviour, quality of services

32 Related Work

o A Service Query Algebra : Based on the service query model, enables generation
of SEP’s

o Service Query Optimisation : Score function to calculate quality of SEP’s, algo-
rithms to implement it

The service query model is based on two concepts :

1. Service Schema : captures key features of all web services across an application
domain

2. Service Relation : composed of sets of instances conforming to a service schema
Core concepts of a service schema include :

1. A Service Graph : A directed acyclic graph with service operations as vertices,
and dependencies between two operations as the edges.

2. Service Path : A set of operations from a service graph

3. Operation Graph : The union of all service paths that lead to a particular service
operation

4. Operation Set Graph : The union of all service paths that lead to all operations in
a set of service operations

5. Accessible Operation : If an operation is a part of a service graph and all its de-
pendent operations are also a part of the service graph, then it is an accessible
operation

6. Accessible Graph : If each operation in a service graph is an accessible operation,
it is an accessible graph

The paper also defines a QoS model to capture the quality features of web services.
This model categorises the QoS attributes into two sections :

1. Run-time Quality : latency, reliability, availability
2. Business Quality : fee, reputation
The service algebra defined on the basis of the query model has 3 major operators :
1. Functional Map : to locate and invoke desired functionality
2. Quality Based Selection : to locate service instances with desired quality
3. Composition : enables service composition to access multiple services

To summarise, this paper provides a graph based predicate logic approach to gener-
ate service execution plans (essentially work flows) based on a query (essentially a
request) provided by a user (service client).

§3.2 Comparison with The Web Service Request System 33

3.2 Comparison with The Web Service Request System

XSRL provides a fairly rich XML syntax for a request language but takes an Al con-
straint satisfaction planning approach. The user’s request is translated into business
process variables that are encoded into the constraint satisfaction problem. As the
user expresses a more detailed request (i.e. more informations is expressed in the
request which may not relate to the eventual functionality but may related to the ex-
pected quality and other business assertions), the number of process variables grow
and hence the time complexity associated with generation of the execution plan using
the planning algorithms, increases.

Again, considering the fact that we are trying to create a practical system that gener-
ates execution plans on the fly i.e. during a user’s interaction session, it is infeasible
to expect a constraint satisfaction solver to be time optimal and deliver quick results.
No pre-computing mechanisms are adopted in this approach to reduce the time span
between a user’s delivering a service request, and the system returning a result.

On the other hand, [Bouguettaya and Yu 2008] provides a solid mathematical pred-
icate logic and graph based approach to planning execution of services. It has sig-
nificant pre-computing benefits incorporated in its approach which reduces the time
complexity and the actual time span between a service query and the generation of
the execution plan. However, it does not include a normal user friendly language for
expressing the service queries or requests as it is focused on developing a web service
management system rather than a request system.

The main advantage that our approach has over XSRL is the fact that we distinguish
between different types of business process variables in the planning problem, and
therefore cut down heavily on planning time complexity. Since we adopt a graph
based approach for generating the service execution plan, similar to the one used in
[Bouguettaya and Yu 2008], we introduce a pre-computing step for generating the
graph, which reduces the request processing time complexity.

We are now able to see that neither of these approaches were complete with respect to
the needs of a request system expressed in section 2.6. Therefore, we can now move
on to describing the WSRS and all of its parts in Chapter 5.

34

Related Work

Chapter 4

Our Service Example

Before we move on to describing the WSRS, we must introduce a suitable set of ex-
amples that can be used to demonstrate the new concepts that we have developed.
As implementation of the system has been delayed, we use these examples to test the
design of the system by providing data flow and entity relationship diagrams in the
next chapter. We model the case of the Online Travel Agency. We list five fundamental
web services used by the OTA :

The Travel Agency Service : This service coordinates all the payment issues.

The Hotel Service : This service provides hotel room availability, pricing informa-
tion retrieval and room booking facilities.

The Flight Service : This service provides flight availability, pricing information
retrieval and flight booking facilities.

The Train Service : This service provides train availability, pricing information
retrieval and train booking facilities.

The Payment Agency Service : This service provides credit card validity checking
and credit card billing facilities.

The business transactions that the OTA must support are as follows :

Creation of Travel/Holiday Package

— Input required from customer: Budget, Origin, Destination, FromDate, To-
Date, PreferredFlightCompany, Preferred TrainCompany, PreferredHotel, Cred-
itCardNumber

— Initial output : TravelPlan

— Final output : TravelPackage
Booking a Hotel

— Input required from customer: FromDate, ToDate, PreferredHotel, Credit-
CardNumber

— Initial output : Hotel Availability, HotelPrice

35

36 Our Service Example

— Final output : HotelReservation
¢ Booking a Flight

— Input required from customer: Origin, Destination, PreferredFlightCompany,
CreditCardNumber

— Initial output : FlightAvailability, FlightPrice
— Final output : FlightBooking

e Booking a Train

— Input required from customer: Origin, Destination, PreferredTrainCompany,
CreditCardNumber

— Initial output : TrainAvailability, TrainPrice

— Final output : TrainBooking

We provide the information that the customer must supply i.e. Input web service mes-
sages for each of the transactions. The initial output represents the possible options
that must be presented to the customer before his/her credit card is charged and a
final output is generated. We now provide details of the service operations and the in-
put and output messages associated with each operation for each of the five services.
Each of the services we list along with its operations, describes a service interface i.e.
the implementation descriptions of these services and quality of service parameters
associated with the implementations are not listed here.

Travel Agency Service

e payForHotel()

— Input : CreditCardNumber, Price
— Output : HotelPaymentStatus

e payForFlight()

— Input : CreditCardNumber, Price
— Output : FlightPaymentStatus

e payForTrain()

— Input : CreditCardNumber, Price
— Output : TrainPaymentStatus

e checkFinances()

— Input : CreditCardNumber, Price
— Output : FinancialValidity

37

e generateTravelPlan()

— Input : Origin, Destination, Budget, FromDate, ToDate
— Output : TravelPlan , PlanPricing

e createTravelPackage()

— Input : TravelPlan
— Output : TravelPackage , PackagePricing

Hotel Service

o checkHotelAvailability()

— Input : FromDate , ToDate
— Output : Hotel Availability

o getHotelPrice()

— Input : FromDate, ToDate
— Output : HotelPrice

e reserveHotel()

— Input : FromDate , ToDate

— Output : HotelReservation

Flight Service
e checkFlightAvailability()

— Input : Origin , Destination , Date , Time

— Output : FlightAvailability
o getFlightPrice()

— Input : Origin , Destination , Date , Time

— Output : FlightPrice
e bookFlight()

— Input : Origin , Destination , Date , Time

— Output : FlightBooking

38 Our Service Example

Train Service
e checkTrainAvailability()

— Input : Origin , Destination , Date , Time

— Output : TrainAvailability
e getTrainPrice()

— Input : Origin , Destination , Date , Time

— Output : TrainPrice
e bookTrain()

— Input : Origin , Destination , Date , Time

— Output : TrainBooking

Payment Agency Service
e checkCreditCard()

— Input : CreditCardNumber , Price
— Output : CreditCardValidity

e chargeCreditCard()

— Input : CreditCardNumber , Price
— Output : CreditCardChargeStatus

Not all services described in this example are used in the next chapter, but however
we thought it was better to provide the entire example rather than a subset of it. We
now move on to describing and defining each part of our request system, using some
of the services described above as examples to demonstrate the concepts.

Chapter 5

The Web Service Request System

To address the research challenges expressed in section 2.6.1 and to fulfil the needs
expressed in section 2.6, we introduce and define the web service request system in
this chapter.

5.1 Conceptualising the system : A Software Cloud

The first step in creating the request system is to understand how it might be used
and who it might be used by. We shall be referring to the web service request system
every time we use the word system. We now list the roles of people associated with the
system and how these people use the system:

e The User/Consumer/Customer : Any individual/business/machine could im-
plement this role. This is the entity that sends a service request to the system
and waits for a response/result from the system.

e The System Designer : This person/business/organisation is responsible for
creating the service interface descriptions for the services that the system shall
provide.

e The Service Provider : This person/business/organisation shall provide ser-
vice implementation descriptions for the services that it wants to provide to
consumers via the system.

We now see that the system acts as a software cloud that a service consumer interacts
with as shown in Figure 5.1. The system virtually realises the vision of cloud comput-
ing and SOC in an integrated manner. By providing a cloud of services to users, the
system ensures that all the services shall be available to the users as long as they have
access to the system. This potentially rules out connectivity issues that users might
have to the internet in particular, as access to the system may be provided via any
network (not only the internet).

39

40 The Web Service Request System

The System
Designer

The Service Provider

Designs Services For Implements Services For

The Web
Service Request
System

Sends Service Request Sends Results

The User/Service
Consumer

Figure 5.1: The Request System As A Software Cloud

5.2 Defining parts of the system

The next step is to clearly define constituents of the system. We subdivide the system
into distinct parts and subparts :

1. The Model : This can be considered as an ontology that provides semantic
markup/information/meta-data about web services and the user’s requirements.

o The User State Model : The possible requirements of a service consumer and
the state of the consumers request in the system, with respect to multiple
services, are described by this model.

e The Service Description Model : As the name suggests, this model describes
parts of web services provided by the system and also provides meta-information
about these services that are not included in the service descriptions.

2. The Language : The service consumer uses this to specify a service request.
Requests are described in terms of variables defined in the model.

5.3 The Web Service Request Oriented Model 41

3. The Framework : This is the part of the system which accepts the user request,
performs all the necessary tasks and returns a result to the user.

e The Processes : The data/information flows in the system are modelled by
these processes. The algorithms required to achieve automatic composi-
tion of atomic services, and obtaining results from them are part of these
precesses. There are 3 main processes involved in the framework :

(@) The Initialisation Process : This describes the process of service design
and implementation and all the pre-computing steps done before the
system starts accepting requests from users.

(b) The SEP Generation Process : This describes the data flows involved in
the service execution plan generation.

(c) The SEP Execution Process : This describes the service execution pro-
cess according to a SEPlan and the users possible involvement in the
process.

Figure 5.2 describes the web service request system as stated.

Web Service
Request System

\ 4 \ 4 \ 4 \ 4

Web Service L SEP SEP
N User State Initialisation : 4
l Description J [Model J [Broco o J [Generation J [Execution J

Model Process Process

Figure 5.2: The Web Service Request System

We now move on to describing in detail, parts of the system, starting with the web
service request oriented model.

5.3 The Web Service Request Oriented Model

There are several models that describe parts of the web service architecture from dif-
ferent view points. [Booth et al. 2004] describes four important models that can be
used to describe web services, from a unique view point :

42 The Web Service Request System

1. The Message Oriented Model : Explains web services from a message passing per-
spective. It does not relate the messages to the services and focuses on the mes-
sage structure, transport etc.

2. The Service Oriented Model : Sits on top of the message oriented model and ex-
plains the purpose of the messages from a service’s point of view.

3. The Resource Oriented Model : Focuses on resources that exist and the owners of
the resources. Services can be considered as resources.

4. The Policy Oriented Model : Focuses on the constraints applied to the behaviour
of resources.

Therefore, we see that each of these models builds on the previous one and provide
an extra layer of information or semantic mark-up on top of the previous model. It is
easy to see that we could use all of these 4 models together to describe the behaviour
of a web service. But these models do not provide us with enough information to
describe web services from the view point of a service request given by a user. That
is precisely why we create a separate request oriented model to describe the behaviour
of services w.r.t a service request. This model is an additional model to the other four
described above. It does not attempt to replace any of the previous models, but tries
to incorporate further semantic information about web services that pertain to service
requests.

The request oriented model is primarily aimed to describe two separate entities :

1. The state of the user with respect to the system : This represents the fact that the
user wants a product from (via) the system which might require the invocation
of one or many services. During the service invocation phase, the system ob-
tains output messages or results from these services. The user is concerned only
about these results and therefore his state (w.r.t the system) is an indication of
the type of results he is after. Essentially a service request given by the user is an
expression of the state that he wants to achieve after the invocation of services.

2. The description of a web service w.r.t the parameters of user requests : As we have
mentioned before, the existing models of web services do not provide any in-
formation pertaining to user requests. the request oriented model aims to create
service descriptions that describe web services using the information that users
might provide in a service request.

To describe these two entities, we divide the request oriented model into two separate
models, the user state model and the service description model.

5.3.1 The User State Model

In this thesis, we consider business processes equivalent to service execution plans,
that represent the control flow of business logic. It is important to understand a busi-
ness process from the point of view of the user interacting with the business process

5.3 The Web Service Request Oriented Model 43

and awaiting its result. The user is primarily concerned with three things, the func-
tionality (at the service operation level) achieved by the business process, the resulting
output (at the service message level) that is returned by the business process and the
quality of the output. Therefore it is safe to say that the user’s requirements from the
business process would also be centred around these three things.

The user state model is aimed at allowing the user to describe his service request as
a particular state described by the model. The request language allows the user to
describe the user state that he wants to arrive at. We now introduce the concept of
a user state. It models the state of data (relevant to the user) during execution of the
business process. A user state consists of a combination of web service variables. Web
service variables achieve two objectives :

1. They are used to model the possible execution sequences of services that com-
pose a business process i.e. they are used to model the behaviour of business
processes.

2. They are used to track the progress of obtaining results based on user require-
ments during execution of a business process i.e. they track and model the data
flow in a business process that leads to a result or output.

We then create a user state graph which models the state transitions of user states,
which in turn describe the possible execution paths of a business process. The transi-
tions in the states i.e. the edges of the graph or the state dependencies each reflect the
execution of an atomic service. The idea is that when we execute an atomic service
(with a single operation), we expect that the execution shall return a result or output
that shall change the value of a web service variable in a user state. Therefore, exe-
cution of an atomic service changes the user state and hence progresses it to the next or
successor state.

Figure 5.3 provides an outline of the user state model.

ser State
Model

v v

User State
{ User State Graph
\i \/
Web Service User State
Variable Dependency

Figure 5.3: The User State Model

44 The Web Service Request System

Before we go on to describe the user state and the user state graph, it is important that
we describe the web service variable.

5.3.1.1 The Web Service Variable

We have previously talked about the system designer being responsible for designing
the services present in the request system. Now we describe exactly how the designer
goes about that task. If we look at the initial phase of creating a web service interface,
we find that the process is top down and consists of the following steps :

1. Functionality Identification : Identify what functionality needs to be offered by
the service. If a service provider (who already has an implementation of the
business functionality) is trying to create a web service, it is fairly easy for him
to provide both the WSDL interface and the implementation descriptions. But,
when we consider the case of our system designer, we see that it is primarily the
identification of functionality required by the service consumer.

2. Service Operation Definition : Define service operations that can provide the re-
quired functionality.

3. Service Message Definition : Define all the input and output messages required by
the operations.

4. Data Type Definition : Define all the data types required by the messages.

At this point we have enough information to write a WSDL service interface descrip-
tioni.e. create a service interface. The web service variable provides the system designer
with an easy way to model a web service w.r.t its behaviour and capability. The de-
signer essentially follows the same top down approach listed above to create a set
of web service variables, which together reflects how the web service is supposed
to behave and what exactly its capable of providing. The quality of service and other
implementation specific information can also be represented by service variables. For-
mally, the web service variable is defined as follows :

Definition 1 (Web Service Variable)

A web service variable can be described as a representation of service capability, quality and be-
haviour with respect to a service consumer. It is defined as a tuple, var =< ID, T, Name, Val, S >
where :

o ID is a unique global identification number that is assigned to each variables.
o T is the type of the service variable. There are 5 different types of variables :

1. Identification Variable < ident > : Represents core identity information about
a service i.e. service name, abstract data types used, xml namespaces used.

2. Functionality Variable < fn > : Represents the state of a service operation in
the business process execution sequence. (Boolean)

5.3 The Web Service Request Oriented Model 45

3. Information Variable < info > : Represents data or payload i.e. service mes-
sages used by a service.

4. Policy Variable < pol > : Represents a WS-Policy attribute of a single ser-
vice or common to a set of services. This includes quality of service, security and
versioning information.

5. Implementation Variable < impl > : Represents the service provider and ser-
vice implementation elements such as network address and port bindings.

o Name is the name of the variable which includes a service namespace for the service that
this variable describes.

o Val is defined as a double, Val =< D1, D > where :

— Dr is the data type of the payload of the service variable.
— D is data of type Dt and is the payload of the service variable.

o Status is defined as a tuple, S =< I, It, Iy > where :

— Ig is the instantiation status of the variable. It depicts whether the variable has a
value yet or not, i.e. has it been instantiated yet or not. (Boolean)

— I is the instantiation time of the variable. It contains the last time that the variable
was instantiated and its value changed. (Time)

— Iy is the instantiation validity of the variable. It contains the time span that the
value of the variable is valid from the time of last instantiation i.e. It. (Time Span)

Figure 5.4 describes the attributes present in a web service variable.

Web Service
Variable

LNamespaceJ lnstsa}[r;:ﬁstlonj Inst_all_nnt::tlorj tns\tlzrllziconj LDataTypeJ L Data J

Figure 5.4: The Web Service Variable

46 The Web Service Request System

In the user state model we are only concerned about 3 of the 5 types of web service vari-
ables i.e. the identification, information and functionality. These variables represent
abstract service definition elements only and can therefore be referred to as abstract
service variables. The other two types, implementation and policy represent the con-
crete service description elements and are also described as concrete service variables
which we use in the web service description model described in Section 5.3.2.

We now provide a simple example of the process of describing the capability and
behaviour of a web service using abstract service variables. We describe the Train
Service provided in our service example in chapter 4. We do not include the namespace
for each variable in this example as they all belong to the same service and hence
the same namespace i.e. Train. However, if we were to refer to the variables using
the namespace, we would express each variable Var as Train::Var. We shall now go
through the process step by step :

1. Functionality Identification : The train service must implement 3 functions :

(@) Check the availability of seats
(b) Get the price of tickets

(c) Book seats on the train

2. Create Functionality Variables : Define 3 functionality variables that represent the
state of each of the required functions : checkedAvailability, gotPrice, gotBook-
ing. Here we see that each of these variables are designed to represent the state
of each of the functions of the service, and each of them have a value of either
true or false i.e. they are of data type boolean. They are given the data value =
false.

3. Create Information Variables : Define 7 information variables that represent the
information or data that is required as input and output to each of the func-
tions. The input variables are Origin, Destination, Date, Time. The output
variables are TrainAvailability, TrainPrice, TrainBooking. Each of the variables
shall contain either data provided by the user, or returned by the service after
invocation.

4. Create Identification Variables : Define 7 identification variables corresponding
to the name of the service and to the data types that each of the information
variables require : ServiceName, PlaceType, DateType, TimeType, Availabili-
tyType, PriceType, BookingType. ServiceName is given the value, Train.

5. Assign Data Types : Now assign each service variable their data type. So, all
functionality variables are boolean. Destination and Origin are of type Place-
Type. Date and Time are of type DateType and TimeType respectively. Servi-
ceName and PlaceType are of type string. DateType and TimeType are abstract
types and consist of several fields each. DateType has 3 fields : Day (integer),
Month(integer) and Year(integer). TimeType represents time of day and has 2

5.3 The Web Service Request Oriented Model 47

tields : Hours(integer), Minutes(integer). The AvailabilityType is boolean, Price-
Type is float and BookingType is string.

6. Assign Status Values : The status values of each variable reflect whether the vari-
ables have been assigned any values or not. Therefore, all the identification and
functionality variables are given Instantiation Status = true and the time at which
this is done as the Instantiation Time. The information variables are given Instan-
tiation Status = false as they don’t hold any data yet.

We have now described the abstract Train Service via the identification, information
and functionality variables. It can be seen that the first 4 steps if this example pro-
cess correspond to the first 4 steps in the service interface creation process that we
outlined in the beginning of this section. It is also safe to say that once the service
variables corresponding to a service interface are created, the process of creating an
actual WSDL interface description of the service becomes trivial. However, the other
two types of variables i.e. the implementation and policy variables are created by the
service provider, once he has received the abstract service description. We shall see
examples of implementation and policy variables in section 5.3.2.2.

5.3.1.2 The User State

As we have mentioned before, the user state represents the information relevant to
the user during execution of a business process. Therefore in our Train Service exam-
ple, the user would only care about the functionality (checkedAvailability, gotPrice,
gotBooking) and capability (TrainAvailability, TrainPrice, TrainBooking) provided
by the service during its execution. Formally, we define a user state as follows :

Definition 2 (User State)
A user state can be defined as a triple, S =< ID, Vary,, Vary, s, > where :

e ID is a unique global identification number for this state. ID is O for the root state.
o Vary, is a set of functionality variables.
o Varyy, is a set of information variables.

An example user state corresponding only to the Train Service is given in Figure 5.5.
It represents the initial state of the user with id = 0 when no services were invoked
and then the state transition to the next state with id = 1 caused by the invocation of
the checkAvailability() atomic service. We see clearly how the parameters passed to
the invocation (Barcelona,Amsterdam,30/10/2009,10:00) represented by the input infor-
mation variables Origin, Destination, Date and Time are added to the next state along
with the value of the output message TrainAvailability, which is true.

This state of the user represents a point in execution of the business process. In this
example, the business process is one that gives train booking and information facilities
and has operations of theTrain Service as parts of it.

48

The Web Service Request System

-
ID=0

Var_fn = { checkedAvailability = false,
gotPrice = false,
gotBooking = false }

Var_Info = { Origin = #,
Destination = #,
Date = #,
Time = #
TrainAvailability = #,

>
>

Invocation of the checkAvailability()
atomic service

-
ID=1

Var_fn = { checkedAvailability = true,
gotPrice = false,
gotBooking = false }

Var_Info ={ Origin = Barcelona,
Destination = Amsterdam,
Date = 30/10/2009,
Time =10:00,
TrainAvailability = True,

TrainPrice = #,
TrainBooking = #}

TrainPrice = #,
TrainBooking = #}

Figure 5.5: A User State Changed By Invocation Of An Atomic Service

5.3.1.3 The User State Graph

The sole purpose of the user state graph is to show all the possible execution sequences
that a business process might have. A state in the graph progresses to the next state
when a service operation is invoked. As a result of the invocation, the functionality
variable representing the state of the service operation that was invoked is given value
true and the information returned by the invoked service (i.e. output messages of the
invoked operation) is incorporated into the information variables of the next state.
However, we see that the information variables only get values after actual invocation of
a service. Therefore, it is important to note that the user state graph is not a runtime
graph and therefore, none of the information variables in the states of the graph have
any values. The graph represents all the possible execution sequences and not an exe-
cution itself. It is generated as soon as the services offered by the system are designed
by the system designer which represents a pre-computing step.

The edges of the graph, also formally known as the user state dependencies represent the
service operation invocations and hence are depicted by service variables. Formally,
we define a user state dependency between two user states as follows :

Definition 3 (User State Dependency)
A user state dependency can be defined as a triple, Spep =< Spred, Ssuce, Compy, > where :

® Sy IS the predecessor (or previous) state id for this dependency.
® Ssucc 15 the successor (or next) state id for this dependency.

o Compy, is a functionality component that belongs to the abstract web service descrip-
tion model and it represents an atomic service that takes state S ,yeq to state Ssycc.

The functionality component that we have referenced in this definition is stated in
Section 5.3.2.1. The important thing to note about it is that it represents an atomic web
service i.e. a single service operation.

5.3 The Web Service Request Oriented Model 49

We now formally define the user state graph as follows :

Definition 4 (User State Graph)
The user state graph is a directed acyclic graph (DAG) defined as a triple, USG =<1, V,E >
where :

e ris a user state which is the root node of the DAG
o Vs a set of user states that are the nodes of the DAG

o E is a set of user state dependencies that are the edges of the DAG

However, to generate a user state graph, we need another layer of semantic infor-
mation reflecting the pre and post conditions that apply to each service operation.
This is because, a single service operation may provide more than one functionality
and hence may change more than one functionality variable, which is reflected as a
post-condition of the operation. Pre-conditions of an operation represent the function-
alities that must have already been invoked prior to the operation being invoked. We
provide this semantic data in the functionality component defined in section 5.3.2.1.
Therefore, a user state graph can only be generated once the functionality component
is created. We now give an example of a user state graph. Again, we use the Train
Service and describe the users state with respect to invocation of operations of that
service in Figure 5.6.

We have made some assumptions in this example regarding pre-conditions of the op-
erations. We assume that the post-condition of each operation reflects a change in only
1 functionality variable, as shown in the graph. We also assume that the bookTrain
operation is dependent on the getTrainPrice operation which is dependent on the
checkTrainAvailability operation. In the example we can see how the states change
and the values in the state dependencies, reflecting the operations invoked.

We now move on to defining the web service description model that reuses the web ser-
vice variables to create semantic service descriptions.

50 The Web Service Request System

-
ID=0

Var_fn = { checkedAvailability = false,
gotPrice = false,
gotBooking = false }

Var_Info = { Origin = #,
Destination = #,

Date = #,

Time =#
TrainAvailability = #,
TrainPrice = #,

TrainBooking = #}

-
ID=3

Var_fn = { checkedAvailability = true,
gotPrice = true,
gotBooking = true }

Var_Info = { Origin = #,
Destination = #,

Date = #,

Time =#
TrainAvailability = #,
TrainPrice = #,

TrainBooking = #}

S_pred =0
S _succ=1
Comp_fn = {checkAvailability}

S pred=2
| <€—— S succ=3
Comp_fn = {getBooking}

-
ID=A1

Var_fn = { checkedAvailability = true,
gotPrice = false,
gotBooking = false }

Var_Info ={ Origin = #,
Destination = #,
Date = #,
Time = #,
TrainAvailability = #,
TrainPrice = #,
TrainBooking = #}

S pred=1
S succ=2
Comp_fn = {getPrice}

Y

-
ID=2

Var_fn = { checkedAvailability = true,
gotPrice = true,
gotBooking = false }

Var_Info = { Origin = #,
Destination = #,
Date = #,
Time = #
TrainAvailability = #,
TrainPrice = #,
TrainBooking = #}

Figure 5.6: A User State Graph w.r.t The Operations Of The Train Service

5.3.2 The Web Service Description Model

As we have seen, the user state model provides a representation of the user’s require-
ments with respect to web services. It also provides a basis on which the system de-
signer can design the services that are required to fulfil these user requirements.When
we refer to designing services, we mean :

e Creating abstract service descriptions i.e. WSDL interface descriptions for ser-

vices

e Including semantic information about elements in the abstract description : This
is the most important part of designing the services. Semantic information here
reflects the extra meta-data or markup information that is required by the system
to facilitate automatic composition of services (described in the system).

After a service has been designed, its abstract description can be given to a service
provider, who can then implement the service functionality and provide the concrete

5.3 The Web Service Request Oriented Model 51

service description based on the implementation and the network address where it
is available. The provider also follows a process similar to the one followed by the
system designer, when creating an implementation description. He describes the re-
quired information in the form of implementation variables and creates a WSDL de-
scription based on these variables. However, the service provider must also be able
to express policy (i.e. QoS, security protocols, versioning) parameters in the concrete
description. Normally, he would have to include a separate WS-Policy Attachment
[Papazoglou 2008] with his concrete description. With the help of policy variables
that we have previously defined, this task is simplified for the provider. We shall give
examples shortly.

We therefore create a model that is used to design the services based on a set of ser-
vice variables (functionality,information,identification) and then implement the design,
again based on a set of service variables (implementation,policy). We call this model
the web service description model. The system designer uses this model to describe a
single atomic service i.e. one instance of the model describes a web service with one
operation. We further subdivide this model into two parts, the abstract and concrete
part. The abstract part represents the interface description of the web service while
the concrete part represents the implementation description. Figure 5.5 explains the
breakdown of the description model.

\ 4 \4

Abstract Web Service Concrete Web Service
Description Model Description Model

Y v v \4 v
Identification Information Functionality Implementation Policy
Component Component Component Component Component
i \ 4 Y \4 \4 Y
Memespace Abstract Data Web Service Web Service Web Service Web Service
B Types Message Operation Port Policy
N——
\ + \ *
Web Service . . . Versioning
{ Binding [QoS Policy] Security Policy Policy

|

Figure 5.7: The Web Service Description Model

52 The Web Service Request System

We force a component based architecture on this model, to provide suitable abstrac-
tion and facility for reuse of components. Each component in the description model
describes an element of a WSDL description. The parts in the lowest level of the
diagram (boxes in yellow) represent the WSDL elements that the components are de-
scribing. Each component also provides semantic information about the WSDL ele-
ment that it describes.

The objective that we want to achieve eventually from this component based descrip-
tion model, is automatic creation of WSDL service descriptions by reusing the com-
ponents, based on the required operations, messages, data types, port bindings and
policy parameters of the services in the system. We could potentially create a com-
posite service description automatically based on the user requirements on service
variables. This however is not in the scope of this project and we shall flag it as future
work.

We now move on to defining and describing in detail each of the two parts of the
description model with the help of examples.

5.3.2.1 The Abstract Web Service Description Model

The abstract description model, as mentioned before describes the public interface
part of a web service. It has three components, namely the identification, informa-
tion and functionality components. Before we go on to describe each component, we
formally define a web service description component (or simply a component). Each
individual component conforms to this definition :

Definition 5 (Web Service Description Component)

A web service description component provides syntactic and semantic information about a
WSDL description element. It can be defined as a tuple, C =< ID, Type, Name, Desc, SemInfo >
where :

e ID is a unique global identification number for this component.

Type is the type of functionality variable that this component represents.

Name is the name of this component.

Desc is the WSDL description of the element that this component describes.

SemlInfo is the extra semantic information that this component provides for the WSDL
element that it describes. Each component may have different representations of this
semantic information.

As we have mentioned before, each of these components corresponds to an atomic
service i.e. a web service with a single operation. For example, if we were to describe
the Train Service in the form of components, we would have to define separate infor-
mation and functionality components for each of its three operations. However, only

5.3 The Web Service Request Oriented Model 53

one identification component would be required to describe the data type etc as a list
of web service variables and their corresponding WSDL description. We now move
on to describing the individual components of the description models.

The Identification Component

This component contains the service name, the required namespaces, the abstract data
types, that apply to the atomic service that this component is part of. It also contains
the WSDL description of the information that it represents (i,e, the WSDL <types> el-
ement, the targetNamespace, name attributes of the <definition> element) via informa-
tion variables (which is the semantic information part of this component). In our train
service example, the identification components representing service names would
be TrainAvailabilityService, TrainPriceService and TrainBookingService, Figure 5.8

describes this component.
Identification
Component
\4

Identification
Variables

Figure 5.8: The Identification Component

The Information Component

This component is used to describe the input and output messages for the atomic ser-
vice that this component represents, in the form of information variables. The WSDL
<message> elements are described by this component. The specification of exactly
which information variables are required by this atomic service as input and which
ones are required as output, represents the semantic information given by this com-
ponent, as shown in Figure 5.9. The corresponding train service examples of this
component are provided in Figure 5.11.

The Functionality Component

This is the most important component as it represents the only operation of the atomic
service that it represents. The WSDL elements described by this component are <portType>
and <operation>. This component provides the pre and post conditions of the opera-
tion in the form of Fist Order Logic propositions composed of functionality variables.
This is precisely the semantic information required to generate the user state graph.
Figure 5.10 describes this component. The corresponding train service examples of

54 The Web Service Request System

Information
Component

Figure 5.9: The Information Component

this component are provided in Figure 5.11.

Functionality
Component

Figure 5.10: The Functionality Component

We now demonstrate the use of the information and functionality components to pro-
vide semantic information about the three operations (atomic services) that compose
the Train Service in Figure 5.11. We do not provide the Name, Type, Component De-

scription and Id of these components in the Figure.

5.3 The Web Service Request Oriented Model 55

e N N
Abstract Train Availability Atomic Abstract Train Price Checking
Service Atomic Service
Information Component Seminfo : Information Component Seminfo :
Input : Origin, Destination, Date, Time Input : Origin, Destination, Date, Time
Output : TrainAvailability Output : TrainPrice
Functionality Component Semlnfo : Functionality Component Seminfo :
Pre-Conditions : true Pre-Conditions : checkedAvailability = true
Post-Conditions: checkedAvailability = true Post-Conditions: gotPrice = true
\ J \ y,
(- . 0
Abstract Train Booking Atomic
Service
Information Component Seminfo :
Input : Origin, Destination, Date, Time
Output : TrainBooking
Functionality Component Semlnfo :
Pre-Conditions : checkedAvailability = true &&
gotPrice = true
L Post-Conditions: gotBooking = true)

Figure 5.11: Use of Information and Functionality components to describe the Train Service

5.3.2.2 The Concrete Web Service Description Model

As soon as all the identification, functionality and information components of a web
service are defined, the work of the system designer is over. These components (con-
taining the WSDL descriptions) are passed on to service providers who now have the
option of implementing atomic services from many separate services. For example,
say a service provider wishes to provide only informational services i.e. in our OTA
example, he decides to provide availability information for hotels, flights and trains.
Therefore he wishes to implement the checkHotelAvailability(), checkFlightAvail-
ability() and the checkTrainAvailability() operations. This is now an easy possibility
as all he needs to begin implementing these atomic services are the abstract descrip-
tion components corresponding to each of them.

The service provider first creates the implementation and policy variables that model
the concrete parts of the services and then creates a concrete description based on our
concrete web service description model. We now look at the 2 components that compose
this model.

56 The Web Service Request System

The Implementation Component

This component contains the implementation variables that contain the name of the
service provider, and port binding information for the service implementation. The
WSDL description elements described by this component are <binding>, <port>
and <service>. The implementation variables provide the required semantic infor-
mation for this component. Figure 5.12 describes the structure of this component.

Implementation
Component

mplementation
Variables

Figure 5.12: The Implementation Component

The Policy Component

This component describes the Quality of Service, security protocols, and service ver-
sioning information in a list of policy variables. The WSDL <Policy> elements speci-
tied in the WS-Policy Attachment [Papazoglou 2008] are described by this component.
Figure 5.13 describes this component.

Policy
Component

Figure 5.13: The Policy Component

We now demonstrate the use of these two components by the service provider to de-
scribe a concrete atomic web services. We again use the example of the three atomic
services composing the Train Service in Figure 5.14.

5.3 The Web Service Request Oriented Model 57

(. . - . N\ (. . . .)
Concrete Train Availability Atomic Concrete Train Price Checking Atomic
Service Service
Implementation Component Seminfo : Implementation Component SemInfo :
Impl _Vars : Provider = "EuRail", Impl_Vars : Provider = "EuRail",
AbstractService = "TrainAvailabilityService", AbstractService = "TrainPriceService",
Port = "TrainAvailabilityPort", Port = "TrainPricePort",
Binding = "TrainAvailabilitySoapBinding", Binding = "TrainPriceSoapBinding",
Address = "http://eurail.com/availability" Address = "http://eurail.com/price"
Policy Component Seminfo : Policy Component Seminfo :
Policy Vars : Price = "$2", Policy Vars : Price = "$2",
Reliability = 0.95, Reliability = 0.93,
L Availability = 0.98) L Availability = 0.99
e ~

Concrete Train Booking Atomic Service

Implementation Component Seminfo :

Impl_Vars : Provider = "EuRail",
AbstractService = "TrainBookingService",
Port = "TrainBookingPort",
Binding = "TrainBookingSoapBinding",
Address = "http://eurail.com/booking"

Policy Component Seminfo :

Policy Vars : Price = "$2",
Reliability = 0.96,
Availability = 0.96

Figure 5.14: Use of Implementation and Policy Components To Describe The Concrete Train
Service

In this example we see that each of the three policy components have 3 QoS variables,
Price, Reliability and Availability. Price represents the fee that is required to invoke
each of these services and is set to $2 each. Reliability represents the reliability of the
output given by each of these services. We can see here that each of these services
has greater than 93% reliability. Availability represents the percentage of time that
the services are likely to be available over the internet. We see here that each of these
services is available at least 96% of the time. The provider is free to specify any other
policy variables as required. We have only specified 3 in this example due to reasons
of brevity.

We also see in this example, the implementation variables that correspond to each of
these atomic services i.e. Provider, Service, Port, Binding, Address. These variables
together represent the concrete implementation part of the service description. How-
ever, the service provider is free to create any other implementation variables that
might be required to represent a particular concrete service description.

58 The Web Service Request System

We see therefore, that the entire web service description model with its five compo-
nents together, describes the total behaviour of an atomic web service. We now have
enough semantic information to automatically compose several atomic web services
described using web service variables and components. The system designer is re-
sponsible for creating the service variables and the abstract service descriptions, and
the service provider must create the concrete service descriptions. Once we have the
abstract descriptions of all the atomic services required, we can then proceed to the
automatic generation of the user state graph.

Once the user state graph is generated, we can begin accepting service requests from
users. The requests described in the web service request language are then encoded
into constraints on service variables. Based on the functionality variable constraints in
the encoded request, we automatically find the user state in the state graph that cor-
responds to it. In the next step, we find the path from the root state to the requested
state, again automatically. This path is then used to generate the service execution
plan using the concrete description components by the SEP generation engine. The
service execution plan is then used by the execution engine to obtain the results re-
quired which are then passed on to the user. The processes and algorithms involved
in these steps are described in the framework.

We first define and describe our service request language used to express constraints
on service variables.

5.4 The Web Service Request Language 59

5.4 The Web Service Request Language

The primary goals of the request language are to :

o Allow the user to express the service request in terms of service variables span-
ning several web services

o Allow the user to express an ordering of service operations based on conditional
selection

o Allows the user to describe the state in the user state graph that the user wants
to arrive at i.e. the goal state or target state

e Be easy and intuitive enough for the user to understand and use
e Minimise the amount of constructs required to express a request

e Be easy enough for representation in XML syntax

We assume the fact that the users are presented with all the service variables in the
system and that the user knows about the five types of variables and their respective
purposes. This is a reasonable assumption as far as a normal user is concerned as
the variables mostly represent terms that the user would normally be well versed in.
For e.g. an information variable TrainPrice represents a web service message that is
received after invoking the getTrainPrice() operation for the Train Service, but it also
makes meaningful sense to any service consumer as well. If the consumer is after get-
ting the price of a train ticket, the purpose of an information variable TrainPrice would
be reasonably easy for the consumer to identify.

The primary purpose of the request language is to express constraints on service vari-
ables which form a service request. These constraints reflect the service requirements
of the user. We must now formally define the meaning of a variable constraint.

Definition 6 (Web Service Variable Constraint)

A web service variable constraint is defined as a logical expression described in propositional
calculus. A Web service variable and its possible value are atomic propositions that are com-
bined by a equational logic connective (either one of < (less than), > (greater than), = (equal
to), <= (less than or equal to), >= (greater than or equal to)) to form an atomic variable
constraint. Two atomic variable constraints are combined using a propositional logic connec-
tive (either one of and (Conjunction), or (Disjunction), not (Negation)) to form a compound
variable constraint. A variable constraint is either mandatory or optional.

As an example, let us express a constraint on information variables : Train Availability =
” Available” and TrainPrice < $50. In this compound variable constraint, TrainAvail-
ability, “Awvailable”, TrainPrice, “$50” are atomic propositions. The equational logic
connectives are '="and '<’. The propositional logic connective is and. It must also be
noted that a variable constraint on a type of service variable is composed only of ser-
vice variables of that type. We can now go on to formally define a web service request
in terms of variable constraints.

60 The Web Service Request System

Definition 7 (Web Service Request)
A web service request is defined as a tuple R = < Var;g, Variyz,, Var gy, Variyp, Varpo, Ret >,
where :

o Varj; is a set of web service variable constraints on identification variables.

Variyg, is a set of web service variable constraints on information variables.

Varp, is a set of web service variable constraints on functionality variables.

Varip is a set of web service variable constraints on implementation variables.

Var o1 is a set of web service variable constraints on policy variables.

e Ret is a set of information variables that the request defines as return values.

We now formally define the request language which is used to express requests for
web service compositions in the form of constraints on web service variables.

Definition 8 (Web Service Request Language)

WSRL is defined as a language using which a normal user can express constraints on web
service variables. A mandatory constraint on a service variable of type var is expressed using
the unary operator require<<var> p, where p is a web service variable constraint composed of
service variables of type var. Optional constraints are specified using the unary optional p
operator and preferential constraints are expressed using the binary prefer py to py operator.
Conditional constraints are expressed using the binary if p, then py operator. An ordering in
constraints is achieved using the n-ary request p1, ..., p, operator. The information or data
expected as a return value or result by the user is expressed using the unary return p operator.

The semantics of WSRL operators are clearly expressed in Table 5.1 and we provide a
full Backus-Naur Form(BNF) definition of WSRL in Appendix B.

5.4.1 Examples of WSRL Requests

The medium of expression of requests can either be XML or simply a list of opera-
tors with constraints. We demonstrate both these forms of request expression in the
following examples.

5.4.1.1 Getting a Train Ticket Booking

The requirements of the user, that must be expressed in this request are as follows :
1. Must get a train ticket from Barcelona to Amsterdam
2. Ticket must cost less than $300
3. The train company must be Eurail

4. Prefer to travel on 30/10/2009, but 31/10/2009 is also fine

5.4 The Web Service Request Language 61

WSRL Operator

Purpose

nxoar

Express the service variable var as part of the service namespace n

request {p1, ..., Pn}

Express ordering of variable constraints p; to p, in the service re-
quest

require<<var> p

Express a mandatory variable constraint p on a service variable of
type var. Here var € {info, fn,id, pol,impl}

if p1 then p; [else p3]

Express a conditional binary (if p; then p;) or ternary (if p; then
p2 else p3) variable constraint

optional p

Express a variable constraint as optional i.e. not mandatory for the
satisfaction of the request

prefer p; to p»

Express a variable constraint as a preference to another i.e. if p; is
satisfied then p, does not hold, else p, needs to be satistied

return p

Express a variable constraint p on information variables, as a re-
turn value for the satisfaction of a service request. A service re-
quest is only satisfied if the information variables contained in p
are returned to the user

Table 5.1: The Operators of WSRL

5. Any time on these dates is good

6. The booking fee must be less than $10

The corresponding WSRL request as a list of operators with variable constraints is

given below :

request{
require<info> Train:: Origin = ”Barcelona”
and Train:: Destination = ”“Amsterdam”
and prefer Train::Date = ”30/10/2009”
to Train::Date = ”31/10/2009”
and Train:: TrainPrice < ”$300”
require<impl> Train:: Provider = “EuRail”

require<pol> Train:: Price < ”$10”

require<fn> Train :: gotBooking

return Train:: TrainBooking

}

We see in this example that all the variables are referenced to the variable namespace

Train by the :: operator.

Now we show the WSRL request expressed in XML :

62 The Web Service Request System

<WSRL>
<REQUEST>

<REQUIRE varType="info”>
Train:: Origin = ”Barcelona”
and Train:: Destination = “Amsterdam”
and prefer Train::Date = ”30/10/2009”

to Train::Date = ”31/10/2009”

and Train:: TrainPrice < ”$300”

</REQUIRE>

<REQUIRE varType="impl”>
Train :: Provider = ”"Eurail”

</REQUIRE>

<REQUIRE varType="pol”>
Train :: Price < ”7$10”

<REQUIRE>

<REQUIRE varType="fn">
Train :: gotBooking

< /REQUIRE>

<RETURN>
Train :: TrainBooking

< /RETURN>

< /REQUEST>
< /WSRL>

5.4.1.2 Getting a Holiday Package

This example demonstrates how WSRL can be used to express service requests that
span multiple services. The requirements of the user, that must be expressed in this
request are as follows :

1. Must go for holiday from Barcelona to Amsterdam

2. Total budget must be less than $3000

3. Prefer to fly, but train travel is also ok

4. If flying, then Alitalia is preferred

5. If going by train, Eurail is preferred

6. Preferred hotel is Hilton

7. Holiday must be between 30/10/2009 and 10/11/2009
8. The holiday booking fee must be less than $100

The corresponding WSRL request as a list of operators with variable constraints is
given below :

65.4 The Web Service Request Language

63

request{

require<info> Travel:: Origin = ”“Barcelona”
and Travel:: Destination = ”Amsterdam”
and Travel :: FromDate = ”30/10/2009”
and Travel::ToDate = ”10/11/2009”
and Travel:: Budget < “$3000”

require<impl> optional Flight::Provider = ”Alitalia”
and optional Hotel:: Provider = ”"Hilton”
or optional Train::Provider = ”"EuRail”

require<pol> Travel:: Price < ”$100”

require<fn> prefer Flight:: gotBooking to Train:: gotBooking
and Hotel :: gotReservation
and Travel:: gotPackage

return Travel:: TravelPackage

}

The XML version of the request is as follows :

<WSRL>
<REQUEST>

<REQUIRE varType="info”>
Travel :: Origin = ”Barcelona”
and Travel:: Destination = ”Amsterdam”
and Travel :: FromDate = ”30/10/2009”
and Travel::ToDate = ”10/11/2009”
and Travel:: Budget < ”$3000”

</REQUIRE>

<REQUIRE varType="impl”>
optional Flight:: Provider = 7 Alitalia”
and optional Hotel:: Provider = ”"Hilton”
or optional Train::Provider = ”"EuRail”
< /REQUIRE>

<REQUIRE varType="pol”>
Travel :: Price < ”$100”
<REQUIRE>

<REQUIRE varType="fn">
prefer Flight:: gotBooking to Train:: gotBooking
and Hotel:: gotReservation
and Travel:: gotPackage

< /REQUIRE>

<RETURN>
Travel :: TravelPackage
</RETURN>
</REQUEST>
</WSRL>

64 The Web Service Request System

We therefore see from these request examples, that WSRL allows a user to express his
request clearly in terms of constraints on web service variables. It might seem that
the if p; then p; else p3 operator is not used, and may not even be required. This is
not the case. The conditional operators are provided to allow the user more control
in expressing the service request. The user might decide to express a condition that
can only be validated at runtime. For e.g. Lets say the user wanted to make use of
a special price discount offer given by the Radisson hotel in Amsterdam, but does not
know if the offer is available. If the offer is not available, then he would prefer staying
at the Hilton. In this case, the request would be expressed as follows :

request{

require<info> Travel:: Origin = ”"Barcelona”
and Travel:: Destination = ”“Amsterdam”
and Travel :: FromDate = ”30/10/2009”
and Travel:: ToDate = ”10/11/2009”
and Travel::Budget < ”$3000”

if require<impl> Hotel:: RadissonSpecialPriceOffer = ”Available” then
require<impl> Hotel:: Provider = “Radisson”

else
optional require<impl> Hotel :: Provider = ”"Hilton”

require<impl> optional Flight::Provider = ”Alitalia”
or optional Train::Provider = ”“EuRail”

require<pol> Travel:: Price < ”$100”

require<fn> prefer Flight::gotBooking to Train:: gotBooking
and Hotel:: gotReservation
and Travel:: gotPackage

return Travel:: TravelPackage

}

We see here that the implementation variable RadissonSpecialPriceOffer (given by ser-
vice provider Radisson) is used to express this condition. We have now covered the
expression of service requests and must move on to how these requests are processed
and the results delivered to the user. The web service request framework deals with the
entire process.

5.5 The Web Service Request Framework 65

5.5 The Web Service Request Framework

In previous sections we have seen how information regarding the user’s requirements
and semantic web service descriptions are modelled. We have also seen how a user
expresses a service request. In this section we present the phases that the system is
associated with, processes that are part of these phases and algorithms that are part
of these processes. We also clearly define how the people associated with the system
feature in these phases.

There are two distinct phases associated with the request system :

1. The Initialisation Phase : This phase represents the period when design and
implementation of the services provided by the system are done, and the user
state graph is generated. This is the only phase that requires the involvement of
the system designer and the service provider and consists of a single initialisation
process.

2. The Operational Phase : This phase represents the period when the system is
operational i.e. accepting requests from users. There are two main processes
associated with this phase :

(a) The SEPlan Generation Process : This process is used to generate the service
execution plan.

(b) The SEPlan Execution Process : This process is used to execute the generated
plan i.e. invoke the services and obtain results to pass on to the user. This
process may require involvement of the user.

We now explain in detail, the processes and algorithms involved in each phase.

5.5.1 The Initialisation Phase

As mentioned before, this phase represents request oriented model instantiation by
the system designer and service implementation by the service provider. There are
however several dependencies in this design phase. We express all these dependen-
cies in Figure 5.15.

We now explain each step of the phase described in Figure 5.15 :

1. The system designer elicits user requirements and creates all the identification,
information and functionality variables.

2. The system designer creates the abstract service description components and fin-
ishes the abstract service design.

3. The service provider is obtains the abstract service description components from
the system and starts implementing services.

66 The Web Service Request System

The System

Designer The Service Provider

Concrete

}
|
1
: Service S HE Abstract Service _________ N il i
I
: Variables i : Descriptions Descriptions | |
) T |
: | RN TR)
I |
I |
| : The Service Description Model
I |
I |
|| User State I User State Graph
| Graph Generator
: —— /"
The User State Model The Web Service Request Oriented Model

Figure 5.15: The Initial Service Design Phase

4. The user state graph generator algorithm is used to generate the user state
graph. The inputs required for this algorithm are the abstract service variables
that are part of the initial user state and the functionality components.

5. The service provider sends the implementation and policy components to the sys-
tem i.e. sends the concrete service descriptions.

We now describe the user state graph generator algorithm that is involved in this
phase and provide an example of its execution. It must be noted that the algorithms
described in the following sections have several comments within them to provide
clarity to the function calls that are made in the statements. These function calls are
assumed to be clear and understandable with minimal complexity and therefore have
not been expanded and explained further.

5.5 The Web Service Request Framework 67

The User State Graph Generator

The user state graph is the most important part of our system as it is required for
calculating the goal state path stated in Definition 9. The user state graph genera-
tor(Algorithm 1) is given the root state , root and a list of all the functionality compo-
nents in the system , op[]. It initialises an empty user state graph which has the first
state as root. It then iterates through each of the functionality components in op[] and
checks whether any of them have pre-conditions that are satisfied in the current state
(which is the root state on the first iteration).

As an example of this, let us consider the Train Service again. Only one functionality
component in the train service has a precondition that is met in the root state. This
is the checkAvailability component whose pre-condition is always true. This implies
that this component can be invoked at any stage of the process. We are careful in
such cases as we also check whether the post-conditions of the component are already
satisfied in the current user state. If they are, then we do not use this component to
create the next state to avoid cyclic dependencies. We also do this to avoid duplication
of user states. The user’s request must correspond to only one state in the graph.

If these conditions are met, the functionality component op is a candidate for becom-
ing the next user state dependency or graph edge. We apply the post conditions de-
scribed in op to generate the next state. We add this nextState to our user state graph
node list USG.V and then create a new user state dependency dep which is added
to the user state graph dependency list USG.E. The algorithm is then recursively
called with nextState as root and the same list of functionality components op|[]. This
recursive call returns a branch of the USG which is another USG with a list of nodes,
dependencies and root node. This branch is then simply added to the the main one
by adding its nodes and dependencies to the main node and dependency list. The
algorithm then goes to the next iteration and considers the case for the next func-
tionality component. In our Train Service example we clearly see that the initial loop
creates only one branch for the getAvailability component, as the other 2 components
getPrice and bookTicket have preconditions that are not satisfied for the initial root
state, which does not change with each iteration.

Analysing the time complexity of this algorithm we find that this is a recurrence with
time complexity T(n) = O(n.log(n)), where n is the number of functionality com-
ponents that have preconditions satisfied in the root state. Therefore, the algorithm
scales well with the increase in functionality components in the system i.e. an in-
crease in the atomic services supported by the system. However, because this is a
pre-computing step, it isn’t time critical w.r.t the user.

68

The Web Service Request System

Algorithm 1 USG Generator

Input: root /** The Root User State **/ op|[] /** List of Functionality Components **/
Output: USG /** The User State Graph **/

1: USG « intUSG(root) /** Initialise USG **/

2: [** For each functionality component in op[] **/

NS 9ok @

5

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

: for-each op in op[] do

current < root [** Current user state **/

/** Check if the preconditions are true in current user state **/

if arePreTrue(op, current.var[]) AND arePostTrue(op, current.var[]) = false
then

varCopy|] = current.var|]

[** Apply the postconditions to the current state’s variables **/
current.varFn[] « applyPost(op, current.var|])

/** Check if the nextState is the same as this state **/
[** 1f yes, then move on to next op **/
if noChange(varCopy|], current.var(]) then
continue
end if

[** Get a global identifier for the next user state **/
i « getNewStateldentifier()

/** Create the next user state **/
nextState < createNewState(i, current.var|])

/** Add the next state to the USG **/
USG « addState(USG, nextState)

/** Create a user state dependency **/
dep «— createNewDep(op, root, newState)

/** Add dep to the user state dependency list **/
USG « addDep(USG, nextDep)

/** Recursively call USG-Generator with nextState as root to get branch **/
branch <« USG — Generator(nextState, op[])

/** Add branch to this USG **/
USG « addBranch(USG, branch)

end if

40: end for-each
41: return USG

5.5 The Web Service Request Framework 69

5.5.2 The Operational Phase

This phase represents the actual running of the system. As described before, it con-
sists of two important processes, the SEPlan generation process and the SEPlan execution
process. Each of these processes might be implemented as daemons that run while the
request system is operational. We now look at each of these processes in detail.

5.5.2.1 The SEPlan Generation Process

The purpose of this process is to accept a service request expressed in WSRL from the
user, and generate a service execution plan from that request. Figure 5.16 describes
the steps involved in this process. We go through each step as follows :

1. The user describes his request in WSRL and sends it over the network to the
request system where it is accepted by the request encoder algorithm.

2. The request encoder algorithm encodes the WSRL request into a set of service
variable constraints as state in Definition 7 in section 5.4.

3. The encoded service request is passed on to the request mapper algorithm,
which maps the user state that the functionality variables in the request cor-
respond to. This state is the goal state that the execution plan must eventually
reach.

4. The goal state is then given to the target state path finder algorithm, which finds
a path in the user state graph that takes the root user state to this goal user state.

5. This goal state path is then given to the execution plan generator algorithm
which uses the concrete service descriptions in the system to create the service
execution plan.

We must now formally define what we mean by a goal state path and a service execu-
tion plan.

Definition 9 (Goal State Path)

A goal state path for a user state g is defined as a set Py = {D1, D»,, Dy} where D; is a
user state dependency, 1 < i < nand D1.Sy,g = 1 (root state) and Dy.Ssycc = goal (goal
state).

Definition 10 (Web Service Execution Plan)

A web service execution plan is defined as a set ExP = {ExIj, ExIy,, ExI, } where ExI;
is an execution item, 1 < i < n. An execution item is defined as a double Ex] =<
Comp gy, Compiyp >, where :

o Compy, is a functionality component.

o Compjyy is an implementation component that provides concrete service description
for Compy,,

We now describe the algorithms that are involved in this phase.

70 The Web Service Request System

‘ Web Service Request Language '

Service WSRL Service
Variables Request
T — T
User
Network
Web Service Request System
Request
Encoder
User State > Request ‘ Encoded Service
Graph Mapper Request
— —_—_—
User State
Graph

) S

Target

Goal State ‘========fi-| State Path

Finder

Concrete Execution al State
Service - Plan Rath
Descriptions Generator e————
T ——

Service Execution
Plan

Figure 5.16: The Service Execution Plan Generation Process

The Request Encoder

The request encoder (Algorithm 2) is used to encode the WSRL request provided by
the user, into a web service request, stated in Definition 7. This is a very trivial and
simplistic algorithm as it performs a single pass on the WSRL service request, parsing
the request for each type of variable present in the request, and encoding the variables
into service variable constraints as stated in Definition 6. It then creates and returns

5.5 The Web Service Request Framework 71

the service request. Time complexity for this algorithm is simply O(n) , where n is the
number of variables constrained in the given WSRL request.

Algorithm 2 Request Encoder

Input: UR /** The User Request **/

Output: SR /** The Service Request **/

: [** Find all ”id” variable constraints and add them to id[] **/
id[] < parse(UR,"”id")

/** Find all “"info” variable constraints and add them to info[] **/
infol] < parse(UR,”info”)

/** Find all “"fn” variable constraints and add them to fn[] **/
fn[] < parse(UR,” fn”)

—_
<

/** Find all “pol” variable constraints and add them to pol[] **/
pol[] < parse(UR, " pol”)

e
L NP

/** Find all “impl” variable constraints and add them to impl[] **/
impl[] < parse(UR,”impl”)

S Y
ISANES LI o

/** Get the return info vars and add them to ret[] **/
ret[] < getReturnVars(UR)

== =

[** Create the service request **/
: SR « createSR(id[], infol], fn[], pol[], impl(], ret[])

N NN

: [** Return the service request **/
: return SR

N
(M)

An example encoded request that represents the WSRL request for train ticket booking
specified in section 5.4.1.1 is given in Figure 5.17.

{ 3\
Encoded Service Request : Get Train Ticket Booking

Var_id ={}
Var_info = { Origin = "Barcelona",
Destination = " Amsterdam",
Date = "30/10/2009" or Date = "31/10/2009" }
Var_fn = { gotBooking = true }
Var_impl = { Provider = "EuRail" }

Var_pol ={ Price <"$10" }

\ J

Figure 5.17: An Example Encoded Service Request.

72 The Web Service Request System

The Request Mapper

This request mapper (Algorithm 3) is used to find the goal user state in a user state
graph. This is also a very simple algorithm which goes through each node 7 in the
list of nodes in the graph USG.V and checks whether the functionality variable con-
straints expressed in the given service request SR apply to the current node (user
state). If it does, then it returns the required node G. If none of the nodes are ap-
plicable then the algorithm returns an error message ERR. This algorithm has time
complexity of O(n.V) where n is the number of functionality constraints in SR, which
shall always be trivial w.r.t V which is the number of nodes (user states) in the graph.

Algorithm 3 Request Mapper

Input: SR /** The Service Request **/ USG /** The User State Graph **/
Output: G /** A User State **/
1: /** For each node in user state graph **/
2: for-each v in USG.V[] do
3: G+
F «— getFnConstraints(R)
if fnConstraints Apply(F, G) then
return G
end if
8: end for-each
9: return ERR

An example goal user state that corresponds to the WSRL request for train ticket book-
ing specified in section 5.4.1.1 is given in Figure 5.18.

-
D=3

Var_fn = { checkedAvailability = true,
gotPrice = true,
gotBooking = true }

Var_Info ={ Origin = #,
Destination = #,
Date = #,
Time = #
TrainAvailability = #,
TrainPrice = #,
TrainBooking = #}

Figure 5.18: An Example Goal State

5.5 The Web Service Request Framework 73

The Target State Path Finder

This target state path finder (Algorithm 4) is used to find the goal state path, stated
in Definition 9. It initialises a list of user state dependencies P and then gets the target
dependency target s, which points to the given target state target. This is a matter
of matching state id’s and is therefore performed in O(E) time, where E is the num-
ber of state dependencies. This is the the dependency that corresponds to the last
dependency in the final goal state path, and is now added to P. The algorithm then
backtracks its way from the first node of target,., i.e. Speq to the root state. In each
step of the way, the next dependency is added to list P. When it is done, P contains the
goal state path in reverse order. A simple reversal of order is done and P is returned.
We see here that the worst case time complexity for this algorithm is O(E?).

Algorithm 4 TS-Path-Finder

Input: root /** The Root User State **/ target /** The Target User State **/

Output: P /** The Target State Path **/

: [** Backtrack from the target state by looking at the user state dependencies **/
/** Initialise a user state dependency list to hold the target state path **/

P — initDependencyList()

/** Locate the target dependency in the list **/

targetg,, < locateDepInList(USG.E[], target,” Successor”)

/** Add the dependency to the list **/

P «— addDepToList(P, targetep)

/** Backtrack until the root user state is reached **/

while target ep.Sprea # root do
targetge, < locateDepInList(USG.E[], targetjop.Spreq, " Sticcessor”)
P « addDepToList(P, targetg,,)

end while

[** Reverse the order of P **/

P — reverseOrderO f DependencyList(P)

return P

= e e e e e
AN L A ral =

The example target state path that corresponds to the goal state given in Figure 5.18 is
given below in Figure 5.19.

S pred=0
S_succ =1
Comp_fn = {checkAvailability}

S pred=1
S_succ =2
Comp_fn = {getPrice}

S _pred=2
S _succ=3
Comp_fn = {getBooking}

Figure 5.19: An Example Goal State Path

74 The Web Service Request System

The Service Execution Plan Generator

The service execution plan generator (Algorithm 5) uses the goal state path, imple-
mentation & policy components in the system, and the service request to generate
a service execution plan as stated in Definition 10. The execution plan Exp is first
initialised and then the algorithm iterates through each state dependency in the goal
state path P. In each iteration checks are made to see if any implementation and policy
constraints have been specified in the service request SR. If there are any such con-
crete service constraints then an implementation component is searched for in Impl|],
which satisfies these constraints. An example of this is given in our train ticket book-
ing request. The constraints Provider = EuRail and Price < $10 are specified and
hence the algorithm finds the implementation components supplied by the company
that books EuRail train tickets and which offers the service for less than $10.

If no such concrete service variable constraints are specified, then any implementa-
tion component is chosen that provides the functionality of fnComp. The implemen-
tation component implComp , along with its corresponding functionality component
fnComp is composed into an execution item Expltem, which is then added to the plan
Exp. Afteriterating through all the state dependencies in P, the algorithm returns Exp.
We see here that the worst case time complexity for this algorithm is O(E.n) where n
is the number of implementation components in the system and E is the number of
nodes in the USG or the maximum length of P.

The example execution plan that corresponds to the goal state path in Figure 5.19 is
given below in Figure 5.20.

Service Execution Plan :
Get Train Ticket Booking Request

1. < checkAvailability , EuRailTrainAvailabilityService >
2. < getPrice , EuRailTrainPriceService >

3. < getBooking , EuRailTrainBookingService >

Figure 5.20: An Example Service Execution Plan

5.5 The Web Service Request Framework 75

Algorithm 5 Execution-Plan-Generator

Input: P, Impl]], Pol[], SR
Output: ExP /** The Service Execution Plan - An ordered list of functionality and

o ® N

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

implementation component doubles **/
/** Get the impl and pol constraints from the SR **/
ImplConst|| < getImplConstraints(SR)
PolConst|[] < getPolConstraints(SR)
Exp « initExp()
[** For each state dependency in the goal state path, get the fn component associ-
ated **/
for-each p in P do
/** Get the associated functionality component **/
fnComp «— getFnComp(p)

/** Check whether any impl var constraints and pol var constraints are present
>!->(-/
if ImplConst[] # empty OR PolConst[| # empty then
/** Get the impl comp. that agrees with the constraints and corresponds with
the fn comp **/
implComp «— getImplComp(fnComp, Impl||, Pol[], ImplConst[], PolConst(])
else
/** Get any impl comp that correspond with the fn comp **/
implComp «— getImplComp(fnComp, Impl[])
end if
/** Create an Execution Plan Item from these two components **/
Expltem «— createExpItem(fnComp, ImplComp)
/** Add it to ExP **/
Exp < addToExp(ExpItem)
end for-each
return ExP

76 The Web Service Request System

5.5.2.2 The SEPlan Execution Process

This process is responsible for invoking the web services according to the service exe-
cution plan, and obtaining results from them. In the case that the invoked services do
not return proper results, this process sends an error message to the user as described
in Figure 5.17. We shall now go through this process step by step.

1. A service execution plan generated by the SEP generation process is passed to
the SEPExecutor algorithm.

2. This step is non-deterministic as it involves invocation of web services. In the
case that the invoked services return a valid result, it is passed on to the user
and the process ends. Whereas in the case that one of the invoked services fails
to return a valid result, an error message is generated, which is passed on to the
user.

3. If the user decides to re-send a different WSRL request in response to the previ-
ous error message, he sends it to the SEP Generation process.

4. Another SEP is generated and the process goes back to step 1.

GenSeEraPtion | Service
| Execution Plan
Process
U W

New WSRL Request

Error Message Service Result
SEPExecutor

Figure 5.21: The SEPlan Execution Process

We shall now move on to describing the SEPlan Executor Algorithm used to invoke
services according to the service execution plan.

5.5 The Web Service Request Framework 77

The SEPlan Executor

The SEPExecutor (Algorithm 6) is responsible for invoking web services to obtain
results based on a service execution plan. The result of this algorithm is often non-
deterministic. This is because it is responsible for actually invoking web services,
which might not always return correct results. In fact, they might not return any re-
sults at all, in which case the algorithm stalls. A timeout must be specified on service
invocations in the actual implementation of the algorithm, but it is not specified here.
This algorithm also supports dynamic lookups for other service implementations that
provide the same functionality in case the invoked services return errors.

The inputs to this algorithm are the information components Inf[], the implementa-
tion components Impl[], the user state graph G, the service execution plan SEP and
the service request R. Two counters are initialised in this algorithm. The errorCounter
counts the number of times a service invocation returns an error instead of a result.
and the changeCounter counts the number of times a different service implementation
is invoked to get the same functionality. Maximum thresholds are also defined for
each of these counters.

The algorithm runs until each execution item SEPitern in SEP has been used to invoke
a service and get a successful result. For each execution item, the corresponding in-
formation component in foComp that describes what messages are required as inputs
for the fnComp in the item, is obtained. The SOAP messages corresponding to the
input information variables in infoComp are created in soapMsgs[]. The service im-
plementation described in SEPItem.implComp is then invoked by sending the SOAP
input messages in soapMsgs|] to the network address specified in SEPItem.implComp.

At this stage we determine whether to invoke a service from a different provider. If
the previous invocation has returned an error message in Res then the errorCounter is
incremented and the the rest of the iteration is skipped to go to the next iteration. The
SEPItem is the same in this iteration as it hasn’t yet been popped from SEP. Therefore
if this happens for maxErrors times we change the service provider at line 18 of the
algorithm. The change counter counts exactly how many times changes have been
made. If the changeCounter reaches maxImplChanges then the algorithm returns an
error ERR.

If no errors are encountered and Res has the required result for SEPItem, then we add
the info in Res to user state graph G. This is the stage where the information variables
in the user state graph actually get values. If a change to any information variable
is made, we check whether the changed value agrees with the constraints that the
user has already mentioned in the service request R. For example, if the train price
returned is $400, then it does not agree with the user constraint TrainPrice < $300 in
our train ticket booking request example. In such a case, an error ERR is returned to
the user which explains that the requirements could not be met. Another possibility

78 The Web Service Request System

at this stage could be the changing of service providers to check better rates, but we
have not included that in our algorithm.

If the changes made to information variables agree with the constraints in R, then the
SEPItem is popped from the SEP and the next SEPItem is handled. At the stage when
the SEP has no more items i.e. it is exhausted, the results specified as desired return
values in the service request R.Ret are obtained from the USG and returned to the
user.

We can only measure the time complexity of a deterministic execution of this algo-
rithm i.e. when no web services do not return any value or error message. The com-
plexity for this case is O(n.V) , where V is the maximum number of items in SEP and
n is the number of implementation components in the system.

5.5.3 Algorithm Time Complexities

We can see in Table 5.2 that the worst case time complexities of the algorithms scale
well (i.e. linearly) with the increase in number of atomic services in the system. This
implies that the system shall be able to support an increasing number of services pro-
vided the adequate hardware requirements are met (for running the system imple-
mentation).

5.5 The Web Service Request Framework 79

Algorithm 6 SEPExecutor

Input: Infl[], Impl[|, USG, SEP,R

Output: Res /** The Result **/
1: errorCounter < 0, changeCounter < 0, maxErrors < 3, maxImplChanges < 3
2: while SEP # empty do

3:
4:
5

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:
31:

32:
33:
34:
35:
36:
37:
38:

SEPitem < getNextItem() /** Get next item in SEP **/
infoComp « getCorrInfoComp(SEPitem.fnComp, Inf[]) I** Get info comp **/
/** Determine which information variables from the service request represent
the input messages for this item **/
msg[] «— getInputMessages(infoComp, R)
/** Construct the SOAP input messages for this item **/
soapMsgs|] < constructSOAPmsgs(msg|])
/** Invoke the service by sending the SOAP message to the required network
address **/
Res «— invokeService(SEPItem.implComp, soapMsgs|])
[** 1f the service returns an error message then increment error counter and
continue to next iteration **/
if isErrorMsg(Res) then
if errorCounter < maxErrors then
errorCounter « errorCounter + 1
continue
else
if changeCounter < maxImplChanges then
SEP « changelmplComp(SEPitem)
changeCounter < changeCounter + 1
continue
else
return ERR
end if
end if
end if
errorCounter < 0, changeCounter < 0
/** Add the info returned to the next user state in the USG **/
USG « addInfoToNextState(SEPItem, Res, P)
/** Check whether any information variables have been changed w.r.t the pre-
vious state **/
if anyInfoChange(USG) then
/** Check whether the change is good w.r.t the info variable constraints in the
service request **/
if NOT(isChangeGood(R, USG)) then
/** if change not good return error message stating the inconsistency **/
return ERR
end if
end if
/** Remove the current item from the SEP **/
popltem(SEP)

39: end while
40: return results(USG, R.Ret)

80 The Web Service Request System
Algorithm Time Complexity Worst Case Analysis
User State Graph | O(n.log(n)) n is the number of functionality components that
Generator have preconditions satisfied in the root state. In the

worst case n = total number of functionality compo-
nents in the system

Request Encoder | O(n) n is the number of variables constrained in a WSRL
request. In the worst case, n = total number of vari-
ables in the system, but this is very very unlikely.

Request Mapper | O(n.V) n is the number of functionality variable constraints
in a WSRL request and V is the number of nodes in
the user state graph. In the worst case, 7 is the total
number of functionality variables in the system.

Target State Path | O(E?) E is the number of user state dependencies in the user

Finder state graph. This is the worst case complexity.

Service Execution | O(n.E) n is the number of implementation components in the

Plan Generator system and E is the number of nodes in the user state
graph. This is the worst case complexity.

SEPlan Executor | O(n.V) n is the number of implementation components in the

system and V is the maximum number of items in the
SEPlan. In the worst case V' = total number of nodes
in the user state graph.

Table 5.2: Worst Case Time Complexity Analysis of all Algorithms

Chapter 6

Conclusion & Future Work

In this thesis we presented a new concept of a web service request system that serves
as a single entry point for service consumers to the web service domain. It provides
an approach that greatly increases the usability of web services, provides enough flex-
ibility to users of the system in terms of requesting multiple services, and provides
enough expressiveness to users for expressing their requests. We have presented a re-
quest language (WSRL) based on which users can express service requests. We have
created a request oriented model for web services, that represents services from the
view-point of service requests. We have also presented the framework responsible for
handling the service requests and returning results to the users.

Our work meets all the needs of a request system that we initially described in Sec-
tion 2.6 and therefore realises our vision of the request system given in Figure 2.5.
The research challenges mentioned in Section 2.6.1 have also been addressed by our
work. Our attempt at minimising time complexities of algorithms required to process
requests, has also been successful. This implies that we have managed to design a
system that can actually be used in the real world.

We see that our system is the first step in realising the service oriented and cloud com-
puting vision of a service cloud which we described in Figure 2.1. What our system
has achieved is an approach to creating semantic web services rather than regular ones.
Our concentration on creating solid models to represent data in the system also ensure
that there aren’t any inconsistencies in understanding for any of the people associated
with the system i.e. the user, system designer and service provider. By providing
full semantics of WSRL and proposing it as the language of choice for expressing ser-
vice requests, we have also potentially addressed the business to business transaction
problem that the Internet has today. That is a definite step forward for service oriented
computing.

Our approach involves the user in the service invocation process when non-deterministic
failures may occur. This ensures that the system’s method of handling non-determinism
is well defined and the user makes the final call in case of any excessive errors in ser-
vice invocation. Apart from this limited interaction, the user of the system is essen-
tially abstracted from the entire web service domain. If proper user interfaces are im-

81

82 Conclusion & Future Work

plemented that make the request expression process intuitive and expressive enough,
the users can potentially treat this system interface as a regular internet market web-
site. The only difference to a normal website in this case is that the system is abstracted
from any specific business and acts as an intelligent service aggregator that spans mul-
tiple business domains.

Graph path finding provides a sound, easy, efficient and practical approach to cre-
ating service execution plans. Our initial plan of adopting a graph based approach
in the system, similar to the ones provided by [Bouguettaya and Yu 2008] was also
followed. We have also provided enough options for business collaboration via our
system at an atomic service level. The abstract services provided by the system may
be implemented by many service providers and therefore many service implementa-
tion choices also potentially exist for users of the system. It must also be noted that
our approach cuts out the need of having another service registry such as the UDDI
which must be queried to obtain relevant services. This significantly cuts out commu-
nication time between the system and an external registry and hence provides better
QoS to users of the system with fast transactions. The implementation and policy
components provided to the system by service providers creates an internal service
registry in the system which also contains semantic information. Therefore, querying
our internal registry for particular implementation components shall have minimal
time complexity.

Our work has concentrated on the design of the system and the underlying models for
knowledge representation and language expression. Although, the implementation
of the system had begun, time limitations did not permit completion. Therefore, in
order for the system to be realised in the future, the following work elements must be
carried out :

o Full implementation : This is imperative to the acceptance of the system in the web
services community and provides for proper analysis of the time complexity of
the algorithms.

o User Interface : This is extremely important as it shall determine how a majority
of Internet users may use the system.

o Testing of the system : The implementation of the system must be tested in several
ways including :
— Unit testing : Test each algorithm in isolation.
- Integration testing : Test each process and then all processes together.

— Scalability testing : Test the scalability of the system i.e. how does the im-
plementation compare to the theoretical scaling analyses.

— User Interface testing : Test the user interface of the system by allowing
actual users, experimentation with it

83

e Possible Improvement of Design : The results from each phase of testing the system
shall give enough scope for improvement of the design if required.

o Reusing SEP’s for common requests : This is also an important topic that must
be approached. Majority of Internet marketplace users require similar products
and are highly likely to send the same or very similar service requests to the
system. Research must be done to create algorithms that determine which SEP’s
are worth storing in the system so that they can be readily reused.

e BPEL Specification Generator : The next step for the system would be to be able
to generate BPEL4WS specifications that could be automatically reused in the
future for corresponding service requests. This would also minimise time com-
plexity by cutting out the plan generation phase.

o Algorithm Optimisation : The testing of the system would provide feedback on the
performance of the algorithms and hence help in optimising them. In particular
the optimality of the generated service execution plan would be a crucial one to
approach first. Time optimality of all algorithms also need to be achieved.

o Industry Acceptance of WSRL : After the potential of the system is proven by test-
ing, WSRL and WSRS must be put out for acceptance by the web service com-
munity and in particular the World Wide Web Consortium (W3C).

In conclusion, we would like to say that the Web Service Request System has enormous
potential in the Internet marketplace, furthers the cause of service oriented and cloud
computing and deserves to be implemented, optimised, tested and deployed in the
future.

84

Conclusion & Future Work

Appendix A

High Level Requirements
Specification

Description of Project

This requirements specification was created during the literature review period in
semester 1 and reflects the initial goals of the project. The initial description of the
project is as follows : There is a need to design and develop a service-centric request in-
frastructure that goes beyond keyword-based, UDDI-based service discovery. Querying or
requesting services involves complex structures, semantics, and relationships that cannot be
supported by keyword-based querying. We propose to design and implement a service request
language that leverages ontologies to better map user service queries or requests to the available
service space.

General Requirements

WSRL shall :
e be created for a normal user.

¢ be intuitive and easy to use for a normal user.

Functionality
WSRL shall :
e be created for a generic service domain.
o allow the user to query the service space based on

1. Service functionality

2. Service quality
o allow the user to invoke service operations

o allow the user to query multiple services

85

86 High Level Requirements Specification

¢ have dynamic service composition facilities
e shall have service query optimisation facilities
e shall provide a formal service model

e shall have options to include a service domain ontology or a set of service do-
main ontologies

e shall be able to generate service work flows

e shall be able to generate service execution plans.

Attributes
WSRL shall consist of :

e The language constructs and grammar
e The query processor for parsing WSRL queries

e The framework for generating service execution plans (or work-flows)

Appendix B

WSRL in Backus-Naur Form

Here we define the WSRL notation we use in the form of BNF grammar. We make the
following assumptions :

e c... represents multiple elements of type e
e [e] denotes optional element e
e <e>,< /e > denote starting and ending XML tags

The formal WSRL language syntax is defined as follows :

wsrl = <WSRL> request </WSRD>

request ::= <REQUEST> variable_constraint ... </REQUEST>
variable_constraint ::= <REQUIRE varType> proposition </REQUIRE>
varType ::= id | info | fn | impl | pol

proposition ;1= <BOOL> true | false </BOOL> |

<AND> proposition... </AND> |
<OR> proposition... </OR> |
<NOT> proposition... </NOT> |

<GREATER> lval </GREATER>
<THAN> rval </THAN> |

<LESS> lval </LESS>
<THAN> rval </THAN> |

<EQUAL> lval rval </EQUAL>

prefer a to b = <PREFER> a
<IO> b </TO>
</PREFER>
optional a ;1= <OPTIONAL> a </OPTIONAL>

return a

<RETURN> a </RETURN>

87

88 WSRL in Backus-Naur Form

if a then b [else c] ::= <IF> a
<THEN> b </THEN>
<ELSE> ¢ </ELSE>

</IF>
namespace ::v ::= <NS> namespace
<VAR> v </VAR>
</NS>
lval = a...zA..Z[rval]
rval = a..zA..Z0..9%
Y = a..zA..Z0..9
namespace := a..zA..Z0..9
a ::= variable_constraint
b ::= variable_constraint

c ::= variable_constraint

Appendix C

Glossary of Acronyms

e HTTP : Hyper text transfer protocol

e JMS : Java message service

e SMTP : Simple mail transfer protocol

e SOAP : Simple object access protocol

e XML : Extensible markup language

e WSDL : Web service description language

e UDDI : Universal description, discovery and integration

e BPEL4WS / WS-BPEL : Business process execution language for web services
e CDL4WS / WS-CDL : Choreography description language for web services
e WSMO : Web service modelling ontology

e OWL : Web ontology language

e OWL-S : OWL for web services

o WSRL : Web service request language

e WSRS : Web service request system

e SEP: Service execution plan

e USG : User state graph

89

90

Glossary of Acronyms

Bibliography

ALONSO, G., CasATl, F,, KUNO, H.,, AND MACHIRAJU, V. 2003. Web services.
Springer-Verlag. (p.12)

AMAZON. 2008. Amazon elastic compute cloud (ec2). http://www.amazon.com/ec2/.
(p-10)

ANDREWS, T. 2003. Business process execution language for web services.
http:/fwww.ibm.com/developerworks/library/ws-bpel. (pp.2, 23)

Bajaj, S. 2006. Web service policy framework (WS-Policy) version 1.2.
http://xml.coverpages.org/ws-policy200603.pdf. (p.22)

BELLWOOD, T., CLEMENT, L., EHNEBUSKE, D., HATELY, A., HONDO, M., HUSBAND,
Y., JANUSZEWSKI, K., LEE, S., MCKEE, B., MUNTER, J., AND RIEGEN, C. V. 2002.
UDDI version 3.0. http://uddi.org/pubs/uddi-v3.00-published-20020719.htm. (p.20)

BOAG, S., CHAMBERLIN, D., FERNANDEZ, M., FLORESCU, D., ROBIE, J., SIMEON,
J., AND STEFANESCU, M. 2002. XQuery 1.0: An XML query language. W3C
working draft 15. (p.29)

BooTH, D., HAaAs, H., MCCABE, F., NEWCOMER, E., CHAMPION, M., FERRIS, C.,
AND ORCHARD, D. 2004. Web services architecture. http://www.w3.0rg/TR/ws-
arch/. (p.41)

BOUGUETTAYA, A. AND YU, Q. 2008. Framework for web service query algebra
and optimization. ACM Trans. Web 2, 1, Article 6. (pp.4, 5, 31, 33, 82)

Buyya, R., YEO, C. S., AND VENUGOPAL, S. 2008. Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as computing utilities.
Proceedings of the 10th IEEE International Conference on High Performance Computing
and Communications (HPCC-08, IEEE CS Press, Los Alamitos, CA, USA), Sept. 25-27,
2008. (p.10)

CABRERA, L. F. 2005a. Web service atomic transaction: (WS- AtomicTransaction).
http://schemas.xmlsoap.org/ws/2004/10/wsat. (p.23)

CABRERA, L. F. 2005b. Web service coordination: (WS-Coordination).
http://schemas.xmlsoap.org/ws/2004/10/wscoor/. (p.23)

CHRISTENSEN, E., CURBERA, F., MEREDITH, G., AND WEERAWARANA, S. 2001.
Web services description language (WSDL) 1.1. W3C. (p.16)

GOOGLE. 2008. The google app engine. http://appengine.google.com/. (p.10)

JIN, L. J., MACHIRAJU, V., AND SAHAI, A. 2002. Analysis on service level agree-
ment of web services. Technical Report HPL-2002-180, Software Technology Laboratory,

91

92 Bibliography

HP Laboratories Palo Alto. available at : www.hpLhp.com/techreports/2002/HPL-
2002-180.pdf. (pp.20,21)

LAGO, U. D., PISTORE, M., AND TRAVERSO, P. 2002. Planning with a language for
extended goals. Proceedings AAAI'02. (p.29)

LAZOVIK, A. 2006. Interacting with Service Compositions. PhD thesis, International
Doctorate School in Information and Communication Technologies (ICT), Trento
University. (p.31)

MANI, A. AND NAGARAJAN, A. 2002. Understanding quality
of service for web services. IBM developerWorks. available at
http:/ /www.ibm.com/developerworks/library /ws-quality.html. (p.21)

MARTIN, D., BURSTEIN, M., HOBBS, J., LASSILA, O., MCDERMOTT, D., MCILRAITH,
S., NARAYANAN, S., PAOLUCCI, M., PARSIA, B., AND PAYNE, T. 2004. Owl-
s: Semantic markup for web services. http://www.w3.0rg/Submission/2004/SUBM-
OWL-S5-20041122/. (p.24)

MCGUINNESS, D. AND HARMELEN, F. V. 2004. Owl web ontology language
overview. W3C recommendation. (p.24)

MICROSOFT. 2008. Microsoft live mesh. http://www.mesh.com/. (p.10)

PAPAZOGLOU, M. P. 2008. Web Services: Principles And Technology. Pearson Educa-
tion. (pp.9,12,13,51, 56)

PAPAZOGLOU, M. P., AIELLO, M., PISTORE, M., AND YANG, J. 2002a. XSRL: a
request language for web services. Internet Computing, IEEE. (pp.4, 29, 30)

PAPAZOGLOU, M. P., AIELLO, M., PISTORE, M., AND YANG, J. 2002b. XSRL: an
xml web-service request language. Internet Computing, IEEE. (p.29)

PAPAZOGLOU, M. P., AIELLO, M., PISTORE, M., YANG, J., CARMAN, M., SERAFINI,
L., AND TRAVERSO, P. 2002. A request language for web-services based on
planning and constraint satisfaction. Lecture Notes in Computer Science 2444, 76-85.

(p-29)

PAPAZOGLOU, M. P. AND GEORGAKAPOULOS, G. 2003. Introduction to the special
issue about service-oriented computing. Communications of the ACM 46, 10 (Octo-
ber), 24-8. (p.9)

PeELz, C. 2003. Web services orchestration and choreography. Web Services Journal.
(pp- 2, 23)

RoMAN, D., KELLER, U., LAUSEN, H., BRUJIN, J. D., LARA, R., STOLLBERG, M.,
POLLERES, A., FEIER, C., BUSSLER, C., AND FENSEL, D. 2005. Web service
modeling ontology. Applied Ontology, Vol. 1, Issue 1, Pg 77-106. (pp. 24, 25)

W3C. SOAP version 1.2 part 1. http://www.w3.0rg/TR/soap12-partl/. (p.15)
W3C. 2001. Wsdl 1.1. http://www.w3.org/TR/wsdl. (pp.17,18)

W3C. 2003. SOAP version 1.2 part 0: Primer. http://www.w3.0rg/TR/2003/REC-
soap12-part0-20030624/. (p.15)

Bibliography

93

W3C. 2004.

Rdf. http:/fwww.w3.0rg/RDF/.

(p.24)

